首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Near-Electric-Field Tuned Plasmonic Au@SiO2 and Ag@SiO2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy
【24h】

Near-Electric-Field Tuned Plasmonic Au@SiO2 and Ag@SiO2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy

机译:近电场调谐等离子体Au @ SiO2和Ag @ SiO2纳米粒子,用于高效利用发光增强和表面增强光谱

获取原文
获取原文并翻译 | 示例
           

摘要

Application of core-shell plasmonic nanostructures in fluorescence enhancement and surface-enhanced Raman scattering (SERS) strongly depends on their near-field electrodynamical environments. A nonradiative energy transfer takes place between fluorescent molecules and surface plasmon when they are too close. However, for a dielectric shell, the SERS intensity of analytes decreases exponentially beyond 2 nm thickness. Although electromagnetic-field enhancement due to surface plasmon still occurs a longer distances from the metal core, it needs a proper design of the composite nanostructure to exploit this advantage, and an optimal distance between the metal-core and analyte/fluorescent molecule still seems necessary. We analyze, both theoretically and experimentally, the near-electric-field (NEF) distributions in the proximity of the core-shell and shell-medium interfaces of Au@ SiO2 and Ag@SiO2 core-shell structures immersed in common dispersing media such as air, water, and DMSO to investigate the effects of surrounding medium and particle geometry on them. Through Mie-based theoretical calculations, we demonstrate that the NEF distributions near core-shell and shell-medium interfaces depend not only on the geometrical parameters, but also on the dielectric constant gradient at these interfaces. For each of the dispersion media and a wide range of metal-core radii, we calculate the optimum shell thickness for obtaining the maximum near-field enhancement at the core-shell and shell-medium interfaces, the essential requirements for applying these nanostructures in fluorescence enhancement and SERS. Theoretically obtained results have been qualitatively verified with experiments.
机译:核 - 壳等级纳米结构在荧光增强和表面增强拉曼散射(SERS)中的应用强烈取决于其近场电动环境。当它们太近时,在荧光分子和表面等离子体之间发生非相互能量转移。然而,对于介电壳,分析物的SERs强度指数呈指数增加超过2nm厚度。虽然表面等离子体引起的电磁场增强仍然发生从金属芯的较长距离,但是它需要适当的复合纳米结构设计以利用这种优点,并且金属核和分析物/荧光分子之间的最佳距离似乎是必要的。我们在理论上和实验上分析了Au @ SiO2和AG @ SiO2核心 - 壳结构的核心壳和壳介质界面附近的近电场(NEF)分布浸没在普通的分散介质中如空气,水和DMSO调查周围介质和颗粒几何形状对它们的影响。通过基于MIE的理论计算,我们证明了核心 - 壳和壳介质接口附近的NEF分布不仅取决于几何参数,还取决于这些接口处的介电常数梯度。对于每个分散介质和各种金属核心半径,我们计算最佳壳体厚度,用于获得核心壳和壳介质界面处的最大近场增强,对荧光施加这些纳米结构的基本要求增强和sers。理论上获得的结果已经用实验定性验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号