首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Toward Improved Catholyte Materials for Redox Flow Batteries: What Controls Chemical Stability of Persistent Radical Cations?
【24h】

Toward Improved Catholyte Materials for Redox Flow Batteries: What Controls Chemical Stability of Persistent Radical Cations?

机译:朝向氧化还原电池的改进的阴极电解液材料:控制持续自由基阳离子的化学稳定性?

获取原文
获取原文并翻译 | 示例
       

摘要

Catholyte materials are used to store positive charge in energized fluids circulating through redox flow batteries (RFBs) for electric grid and vehicle applications. Energy-rich radical cations (RCs) are being considered for use as catholyte materials, but to be practically relevant, these RCs (that are typically unstable, reactive species) need to have long lifetimes in liquid electrolytes under the ambient conditions. Only few families of such energetic RCs possess stabilities that are suitable for their use in RFBs; currently, the derivatives of 1,4-dialkoxybenzene look the most promising. In this study, we examine factors that define the chemical and electrochemical stabilities for RCs in this family. To this end, we used rigid bisannulated molecules that by design avoid the two main degradation pathways for such RCs, viz., their cleprotonation and radical addition. The decay of the resulting RCs are due to the single remaining reaction: O-dealkylation. We establish the mechanism for this reaction and examine factors controlling its rate. In particular, we demonstrate that this reaction is initiated by the nucleophile attack of the counteranion on the RC partner. The reaction proceeds through the formation of the aroxyl radicals whose secondary reactions yield the corresponding quinones. The O-dealkylation accelerates considerably when the corresponding quinone has poor solubility in the electrolyte, and the rate depends strongly on the solvent polarity. Our mechanistic insights suggest new ways of improving the RC catholytes through molecular engineering and electrolyte optimization.
机译:通过用于电网和车辆应用的氧化还原流量电池(RFB)循环循环的激励流体中的正电荷物质。富能富能的自由基阳离子(RCS)被认为是用作阴极物质材料,但实际上是相关的,这些RC(通常是不稳定的,反应物种)需要在环境条件下在液体电解质中具有长的寿命。只有很少的这种能量RCS的家庭具有适合于在RFBS中使用的稳定性;目前,1,4-二烷氧基苯的衍生物看起来最有前途。在这项研究中,我们检查了在该家庭中定义了RCS的化学和电化学稳定性的因素。为此,我们使用刚性双分子的分子,通过设计避免了这种RCS,VIZ的两个主要退化途径。它们的CLOPROTONATION和根本加入。所得RCS的衰减是由于剩余的剩余反应:O-癸烷基化。我们建立了这种反应的机制,并检查了控制其速率的因素。特别是,我们证明了这种反应是通过RC伴侣对抗的亲核oper攻击来启动的。反应通过形成二次反应产生相应的醌的芳氧基自由基进行。当相应的醌在电解质中的溶解度差时,O-Dealkylation显着加速,并且该速率在溶剂极性上强烈取决于溶剂极性。我们的机械洞察力通过分子工程和电解质优化建议改善RC阴极物质的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号