首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Nanostructure and Dynamics of Humidified Nafion/Graphene-Oxide Composites via Molecular Dynamics Simulations
【24h】

Nanostructure and Dynamics of Humidified Nafion/Graphene-Oxide Composites via Molecular Dynamics Simulations

机译:通过分子动力学模拟纳米结构和湿润的Nafion /石墨烯 - 氧化物复合材料的动力学

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we elucidated the nanostructure and dynamics of Nafion-doped graphene-oxide (GO) systems from molecular dynamics simulations at varying hydration levels and temperature. It was found that the presence of GO resulted in the formation of Nafion layers along a direction normal to the GO surface. Chain conformations in the Nafion layers close to the GO interface were characterized by a backbone preferably oriented parallel to the GO plane, whereas the size of the formed nanochannels was found to be commensurate to the average dimensions of the Nafion side chains. The mechanism of water cluster growth was found to change drastically upon introduction of Nafion chains, although addition of GO in the membranes did not impart further measurable changes at the examined temperatures. Hydronium ions were found to adsorb partly onto the GO surface, whereas the pertinent adsorption/desorption rate increased significantly with hydration. Translational dynamics of water molecules was much slower close to the GO surface compared to that at distances far from GO. In the temperature range examined, the dynamics of the effectively confined water molecules was found to follow an Arrhenius-like dependence. Water retention at the Nafion/GO interface appears only at high hydration levels of Nafion.
机译:在这项工作中,我们在不同的水合水平和温度下,从分子动力学模拟中阐明了Nafion掺杂的石墨烯 - 氧化物(GO)系统的纳米结构和动力学。发现存在的存在导致沿着去表面正常的方向形成Nafion层。靠近GO接口的杆层中的链构象的特征在于优选地平行于去平面定向的骨架,而发现形成的纳米槽的尺寸与Nafion侧链的平均尺寸相当。发现水簇生长的机制在引入Nafion链后急剧变化,尽管在膜中添加到膜上并未赋予检查温度进一步可测量的变化。发现纳温离子部分吸附到去表面上,而相关的吸附/解吸速率明显增加。与远距离的距离相比,水分子的平移动态靠近去表面较慢。在检查温度范围内,发现有效受限水分分子的动态遵循相似的Arrhenius的依赖。 Nafion / Go界面处的水保留仅在Nafion的高水合水平下出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号