...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Distorted Janus Transition Metal Dichalcogenides: Stable Two-Dimensional Materials with Sizable Band Gap and Ultrahigh Carrier Mobility
【24h】

Distorted Janus Transition Metal Dichalcogenides: Stable Two-Dimensional Materials with Sizable Band Gap and Ultrahigh Carrier Mobility

机译:扭曲的Janus过渡金属二甲甲基化物:具有相当大的带隙和超高载流动性的稳定二维材料

获取原文
获取原文并翻译 | 示例

摘要

Transition metal dichalcogenides (TMDs) are ideal layered materials to fabricate field effect transistors (FETs) due to their sizable band gaps and high stability, however, the low carrier mobility limits the response speeds. Here, based on recent experimental progress, we employed first principle calculations to reveal a distorted phase of the Janus TMD, IT' MoSSe, which is highly stable, exhibiting a moderate band gap and ultrahigh carrier mobility. We show that IT' MoSSe can be obtained via structural transition from the synthesized 2H phase after overcoming an energy barrier of 1.10 eV, which can be significantly reduced with alkali metal adsorption, thus proposing a feasible approach for experimental fabrications. 1T' MoSSe is predicted to be a semiconductor with a trivial band gap of 0.1 eV (based on Heyd-Scuseria-Ernzerhof calculations), which can be closed to form Dirac nodes and then reopened under strain deformation. Due to almost linear dispersion of the band states, an ultrahigh electron (hole) mobility of up to 1.21 X 10(5) (7.24 X 10(4)) cm(2)/V/s is predicted for the new phase, which is 3 orders of magnitudes higher than traditional counterparts and close to the value of graphene. The high stability, sizable band gap, and ultrahigh carrier mobility in the new Janus systems are expected to be used in high-performance electronics applications.
机译:过渡金属二硫代甲基化物(TMD)是理想的层状材料,用于制造由于其相当大的带间隙和高稳定性而制造场效应晶体管(FET),然而,低载流子迁移率限制了响应速度。在这里,基于最近的实验进展,我们采用了第一个原理计算来揭示Janus TMD的扭曲阶段,它是高度稳定的,表现出适度的带隙和超高载流动性。我们表明它可以通过从合成的2H相的结构过渡获得'MOSSE在克服1.10eV的能量屏障后通过结构转变,这可以用碱金属吸附显着降低,从而提出了一种可行的实验性结构方法。预测1T'MOSSE是具有0.1eV的微小带隙的半导体(基于Heyd-Scuseria-Ernzerhof计算),这可以关闭以形成DIRAC节点,然后在应变变形下重新打开。由于带状态的几乎线性分散,预测新阶段的超高电子(孔)迁移率最高为1.21×10(5)(7.24×10(4))cm(2)/ v / s比传统对应物高3个级,靠近石墨烯的值。新的Janus系统中的高稳定性,相当化的带隙和超高载波移动性预计将用于高性能电子应用。

著录项

  • 来源
  • 作者单位

    Queensland Univ Technol Sch Chem Phys &

    Mech Engn Sci &

    Engn Fac Gardens Point Campus Brisbane Qld 4001 Australia;

    Shandong Univ Sch Phys State Key Lab Crystal Mat Shandanan Str 27 Jinan 250100 Shandong Peoples R China;

    Shandong Univ Sch Phys State Key Lab Crystal Mat Shandanan Str 27 Jinan 250100 Shandong Peoples R China;

    Queensland Univ Technol Sch Chem Phys &

    Mech Engn Sci &

    Engn Fac Gardens Point Campus Brisbane Qld 4001 Australia;

    Queensland Univ Technol Sch Chem Phys &

    Mech Engn Sci &

    Engn Fac Gardens Point Campus Brisbane Qld 4001 Australia;

    Queensland Univ Technol Sch Chem Phys &

    Mech Engn Sci &

    Engn Fac Gardens Point Campus Brisbane Qld 4001 Australia;

    Queensland Univ Technol Sch Chem Phys &

    Mech Engn Sci &

    Engn Fac Gardens Point Campus Brisbane Qld 4001 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号