...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Long-Distance Resonant Energy Transfer Mediated by Hybrid Plasmonic-Photonic Modes
【24h】

Long-Distance Resonant Energy Transfer Mediated by Hybrid Plasmonic-Photonic Modes

机译:由混合等离子体 - 光子模式介导的长距离谐振能量传递

获取原文
获取原文并翻译 | 示例

摘要

Metallic nanostructures are well known for their potential to enhance resonant energy transfer between chromophores, mediated by their plasmonic field. In most cases, the distances for efficient energy transfer are determined by the dimensions of the structure, making dissipation in the metal dominant when long-range energy transfer is desired. Here, we propose and study a new mechanism for long-distance energy transfer, which can lead to highly efficient energy transfer over distances comparable to the optical wavelength, based on hybrid photonic-plasmonic modes in metal dielectric structures. We study such structures theoretically and characterize the energy-transfer processes in them, showing that within these structures, energy can be funneled with similar to 25% efficiency over a range of about 150 nm, with minimal dependence on the location of the acceptor molecules inside the structure. Finally, we demonstrate this new mechanism experimentally, providing a proof-of-concept for long-distance energy transfer in such structures. Our multilayer system is compatible with standard photovoltaic and organic light-emitting diodes and therefore the mechanism presented can be readily employed in such organic optoelectronic devices to improve their performance.
机译:众所周知,金属纳米结构众所周知,其潜力可以增强发色团之间的共振能量转移,由其等离子体场介导。在大多数情况下,有效能量传递的距离由结构的尺寸决定,当需要远程能量转移时,在金属主导中耗散。在这里,我们提出并研究了一种新的长途能量转移机制,这可以通过基于金属介电结构中的混合光电相模式来导致与光学波长相当的距离高效的能量转移。从理论上研究这样的结构和在它们表征能量转移过程,显示出这些结构内,能量可以以类似于25%的效率的范围内的约150nm漏斗形的,与受体分子内的位置的最小的依赖结构。最后,我们通过实验展示了这种新机制,为这些结构中的长途能量传输提供了概念的验证。我们的多层系统与标准光伏和有机发光二极管兼容,因此可以在这种有机光电器件中容易地采用所呈现的机构以提高它们的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号