...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Crystal Growth, Exponential Optical Absorption Edge, and Ground State Energy Level of PbS Quantum Dots Adsorbed on the (001), (110), and (111) Surfaces of Rutile-TiO2
【24h】

Crystal Growth, Exponential Optical Absorption Edge, and Ground State Energy Level of PbS Quantum Dots Adsorbed on the (001), (110), and (111) Surfaces of Rutile-TiO2

机译:在润岩-TiO2的(110)的(110)和(111)表面上吸附的PBS量子点的晶体生长,指数光学吸收边缘和接地状态能级

获取原文
获取原文并翻译 | 示例

摘要

It is important to investigate the dependencies of the optical absorption and the ground state energy level on the size of the semiconductor quantum dots (QDs) on fully studied single crystal TiO2 surfaces. The present study focuses on the systems comprising PbS QDs on (001), (110), and (111) surfaces of single crystal rutile-TiO2. By the optical absorption characterization, the average diameter of PbS QDs on a (001) surface is independent of the number of adsorption cycles, although those on (110) and (111) surfaces increase with the number of cycles. The rate of adsorption of PbS QDs on a (001) surface is higher than those grown on (110) and (111) surfaces. The results suggest that the crystal growth is caused by the difference of the surface energy of the substrate. The exponential optical absorption edge suggests that the structural disorder of PbS QDs on (001) and (110) surfaces increases as the number of adsorption cycles increases. On the other hand, that on a (111) surface decreases as the number of adsorption cycles increases. The ground state energy level of the PbS QDs is independent of the surface orientation of the single crystal rutile-TiO2, but shows negative polarization with the increase of adsorption cycles. It is owing to the possibility of the increase of color centers (electron capture by S- vacancies) in PbS QDs, corresponding to the increase of structural disorder.
机译:重要的是研究在完全研究的单晶TiO2表面上的半导体量子点(QDS)的尺寸上的光学吸收和地状态能级的依赖性。本研究专注于包括PBS QDS上(001),(110)和(111)的单晶金刚石-TiO2的表面的系统。通过光学吸收表征,在(001)表面上的PBS QD的平均直径与吸附循环的数量无关,尽管(110)和(111)表面上的循环次数增加。在(001)表面上的PBS QDS的吸附速率高于(110)和(111)表面上生长的速率。结果表明,晶体生长是由基板的表面能的差异引起的。指数光学吸收边缘表明,随着吸附循环的次数增加,PBS QDS的结构障碍增加增加。另一方面,随着吸附循环的次数增加,在(111)表面上降低。 PBS QD的接地状态能级与单晶金刚石-TiO2的表面取向无关,但随着吸附循环的增加,显示出负偏振。由于PBS QDS中的颜色中心(电子捕获的电子捕获)增加的可能性,对应于结构性障碍的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号