...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Lithiation and Delithiation Processes in Lithium-Sulfur Batteries from Ab lnitio Molecular Dynamics Simulations
【24h】

Lithiation and Delithiation Processes in Lithium-Sulfur Batteries from Ab lnitio Molecular Dynamics Simulations

机译:AB LNITIO分子动力学模拟锂 - 硫电池中的锂化和脱轨工艺

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lithium-sulfur (Li-S) batteries are a promising alternative to the Li-ion technology due to their high theoretical capacity and low cost. Unlike intercalation compounds, the sulfur cathode undergoes a series of complex electrochemical reactions that give rise to substantial structural and morphological changes. Here, we report ab initio molecular dynamics simulations of the lithiation and delithiation reactions that are important in Li-S batteries. The lithiation is studied on two low-energy surfaces, (100) and (001), of sulfur (SO, whereas delithiation is studied on the (111) surface of lithium sulfide (Li2S). The effect of electrolyte is included by constructing interfacial systems between these surfaces and dimethoxyethane, a widely used liquid electrolyte. During both lithiation and delithiation, a layer by-layer reaction pattern is revealed. The evolution of atomistic structure and reaction voltage during lithiation and delithiation is studied, and the microscopic reaction mechanisms are analyzed. Dissolution of lithium polysulfides into the electrolyte is also observed in our simulations, which is attributed to the strong interaction between lithium polysulfides and electrolyte molecules in the form of lithium bonds. Studies of the delithiation process in Li2S confirm that the experimentally observed initial charge barrier is of kinetic origin.
机译:由于其高理论能力和低成本,锂 - 硫(LI-S)电池是对锂离子技术的有希望的替代方案。与嵌入化合物不同,硫阴极经历一系列复杂的电化学反应,其产生了大量的结构和形态变化。在这里,我们报告了在Li-S电池中重要的锂化和脱脂反应的AB Initio分子动力学模拟。在两个低能量表面,(100)和(001)上,硫(如此,在硫化锂(Li2S)的(111)表面上研究了锂的锂化。通过构建界面来包括电解质的效果这些表面和二甲氧基乙烷之间的系统,广泛使用的液体电解质。在锂化和脱位期间,揭示了层逐层反应图案。研究了锂化和脱脂期间的原子结构和反应电压,并且微观反应机制是分析。在我们的模拟中也观察到锂多硫化物溶解到电解质中,这归因于锂键形式的锂多硫化物和电解质分子之间的强相互作用。Li2S中的脱脂过程的研究证实了实验观察到的初始电荷障碍是动力学起源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号