首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Controlling Photocatalytic Reactions and Hot Electron Transfer by Rationally Designing Pore Sizes and Encapsulated Plasmonic Nanoparticle Numbers
【24h】

Controlling Photocatalytic Reactions and Hot Electron Transfer by Rationally Designing Pore Sizes and Encapsulated Plasmonic Nanoparticle Numbers

机译:通过合理设计孔径和封装的等离子体纳米粒子数控制光催化反应和热电子转移

获取原文
获取原文并翻译 | 示例
           

摘要

Controlled self-assembly of different numbers of gold nanoparticles (AuNPs) in the highly ordered cylindrical anodic aluminum oxide nanopores was achieved by a facile ultrasonication method. The surface plasmon resonance bands became red-shifted by increasing the number of nanoparticles (N), in the top view, from monomer M1 (N = 1) to multimers of M2 (N = 3 +/- 1), M3 (N = 5 +/- 1), and M4 (N = 7 +/- 1). The numerical calculations of the M2 model showed the best match of 2 nm nanogap among 28 nm diameter AuNPs in 53 nm diameter nanopores. When the number of AuNPs inside the nanopores increased, more hotspots were generated, which induced the plasmon-driven photocatalysis on AuNP clusters at the incident visible light of 633 nm. The enhanced photocatalytic reaction of 4-nitrobenzenethiol was observed after sequentially increasing the number of AuNPs, which began at M3 and was maximum for M4. The M3 configuration could be a magical number of AuNP clusters for the nanogap-induced photocatalysis under 633 nm irradiation (similar to 0.2 mW) for 12 min. Our methods should be helpful in adjusting photocatalysis by varying the numbers of nanoparticles inside the tunable nanopores.
机译:控制不同数目的高度有序的圆柱形阳极氧化铝纳米孔金粒子(AuNPs)的自组装是通过一个浅显的超声方法来实现。通过增加纳米颗粒的(N)的数目,在顶视图中,从单体M1(N = 1),以M2(N = 3 +/- 1),M3(N的多聚体=表面等离子体共振带变得红移5 +/- 1)和M4(N = 7 +/- 1)。的M2模型的数值计算表明在其中53级纳米直径的纳米孔28周纳米直径的AuNP 2纳米的纳米间隙的最佳匹配。当纳米孔内部的AuNP的数目的增加,产生了更多的热点,其上感应的AuNP簇等离子体驱动光催化在633nm的入射可见光。后顺序地增加的AuNP的数量,这开始于M3并且是M4最大,观察到4-硝基苯硫的增强的光催化反应。的M3组态可以是集群的AuNP为633纳米照射(类似于0.2毫瓦)为12分钟下的纳米间隙引起的光催化的神奇数。我们的方法应该是通过改变可调纳米孔中的纳米粒子的数量调节光催化很有帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号