...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Comparison of Electron-Transfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs
【24h】

Comparison of Electron-Transfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs

机译:来自香豆素343至TiO2,SnO2和ZnO纳米晶体薄膜的电子传递动力学的比较:界面结合分离对的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The role of the interface-bound charge-separated pair (IBCSP) in electron transfer at molecule/inorganic semiconductor interface remains poorly understood despite the importance of its counterpart in the solution-phase charge-separation process. To probe their role, we have compared the dynamics of electron transfer from C343 to TiO2, SnO2, and ZnO nanocrystalline thin films. The decay of the C343 excited state and the formation of oxidized C343 are measured by transient visible absorption to follow the rate of charge separation across the interface to form the IBCSPs. The dissociation of IBCSPs to form free electrons in semiconductor is probed by the free-carrier absorption in the mid-IR. For C343 on TiO2 and SnO2, the rate of the overall electron-transfer process is determined by the rate of the initial charge separation across the interface to form the IBCSP, which dissociates with negligible lifetime. The charge-separation rates are instrument-response-function limited (<150 fs) and ~1 ps for C343 on TiO2 and SnO2, respectively. The faster electron-transfer rate to TiO2 than to SnO2 is attributed to the higher density of conduction-band states in the former. For C343 on ZnO, the initial charge-separation rate across the interface was shown to be instrument-response limited (<150 fs), but the IBCSP dissociates in ~12 ps, which determines the overall electron transfer rate. We discuss possible reasons for the different lifetimes of IBCSP intermediates in interfacial electron transfer from C343 to TiO2, SnO2, and ZnO.
机译:尽管其对应于溶液相电荷分离过程中的对应物的重要性,但在分子/无机半导体界面的电子转移中的作用仍然仍然明朗地理解。为了探讨其作用,我们将电子转移的动力学与C343至TiO2,SnO2和ZnO纳米晶薄膜进行了比较。 C343激发状态的衰减和氧化C343的形成是通过瞬时可见吸收测量的,以遵循界面上的电荷分离速率以形成IBCSP。通过中外自由载体吸收探测IBCSPS在半导体中形成自由电子的解离。对于TiO2和SnO2上的C343,整体电子转移过程的速率由界面上的初始电荷分离的速率决定,以形成IBCSP,这使得寿命可忽略不计。电荷分离速率分别是仪器 - 响应函数限制(<150fs)和TiO 2和SnO2上的C343〜1 ps。对TiO 2的更快的电子传递速率比SnO2归因于前者中的导通带状态的更高密度。对于ZnO上的C343,界面上的初始电荷分离率显示为仪器 - 响应限制(<150ffs),但IBCSP在〜12 PS中解离,这决定了整体电子传输速率。我们讨论了从C343至TiO2,SnO2和ZnO的界面电子转移中不同寿命的IBCSP中间体的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号