...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Hydrogen Sorption Cycling Kinetic Stability and Microstructure of Single-Walled Carbon Nanotube (SWCNT) Magnesium Hydride (MgH2) Nanocomposites
【24h】

Hydrogen Sorption Cycling Kinetic Stability and Microstructure of Single-Walled Carbon Nanotube (SWCNT) Magnesium Hydride (MgH2) Nanocomposites

机译:单壁碳纳米管(SWCNT)氢化镁(MGH2)纳米复合材料的氢气吸附循环动力学稳定性和微观结构

获取原文
获取原文并翻译 | 示例
           

摘要

We have examined comilling with unpurified single-walled carbon nanotubes (SWCNTs) as a method to promote hydrogenation/dehydrogenation cycling kinetic stability in nanocrystalline magnesium hydride (MgH2). The synthesized material was a true nanocomposite consisting of MgH2 covered by highly defective SWCNTs coupled to catalytic metal nanoparticles and mixed with amorphous carbon. The nanocomposite was hydrogen sorption cycled at 300 °C using a volumetric Sievert's type apparatus. Identically milled pure MgH2 was used as a baseline. The microstructure of both materials was analyzed in detail using cryo-stage transmission electron microscopy (TEM) as well as other techniques. The nanocomposite shows markedly improved kinetic performance, both during initial postmilling desorption and during subsequent cycling. Activation energy analysis demonstrates that any catalytic effect due to the metallic nanoparticles is lost during cycling. Improved cycling performance is instead achieved as a result of the carbon allotropes preventing MgH2 particle agglomeration and sintering. Even after 35 absorption/desorption cycles, the SWCNTs remain covering the MgH2 surfaces. Sorption cycling creates a dramatic difference in the particle size distributions between the nanocomposite system and the baseline, whereas the two were nearly identical at the onset of testing. In a separate experiment performed at more aggressive pressure conditions, the nanocomposite received over 100 sorption cycles with fairly minor kinetic degradation.
机译:我们已经用未纯化的单壁碳纳米管(SWCNTS)进行了促进纳米晶氢化镁(MGH2)中促进氢化/脱氢循环动力学稳定性的方法。合成材料是由高缺陷的SWCNT覆盖的MGH2组成的真正纳米复合材料,其含有催化金属纳米颗粒并与非晶碳混合。纳米复合材料使用体积的Sieverver的型装置在300℃下氢气吸附。相同碾磨的纯MGH2用作基线。使用冷冻阶段透射电子显微镜(TEM)以及其他技术详细分析了两种材料的微观结构。纳米复合材料显示出显着改善的动力学性能,既初始误操作解吸和后续循环。活化能量分析表明,在循环期间损失了由于金属纳米颗粒引起的任何催化作用。改善了循环性能的结果,因为碳异滴度防止了颗粒聚集和烧结。即使在35次吸收/解吸循环之后,SWCNT也仍然覆盖MGH2表面。吸附循环在纳米复合体系和基线之间的粒度分布产生剧烈差异,而两者在测试开始时几乎相同。在在更积极的压力条件下进行的单独实验中,纳米复合材料在100多个吸附循环中具有相当轻微的动力学降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号