首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Ranking the Drop-Weight Impact Sensitivity of Common Explosives Using Arrhenius Chemical Rates Computed from Quantum Molecular Dynamics Simulations
【24h】

Ranking the Drop-Weight Impact Sensitivity of Common Explosives Using Arrhenius Chemical Rates Computed from Quantum Molecular Dynamics Simulations

机译:使用量子分子动力学模拟计算的Arhenius化学率排名常见爆炸物的滴重影响敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Drop-weight impact tests are used routinely to characterize the handling safety of explosives. Numerous studies have sought to connect various physical and chemical properties of the energetic molecules and materials to their measured impact sensitivities. Wenograd in the early 1960s demonstrated that there is a strong dependency of the drop-heights on the critical temperatures required for explosives to undergo prompt reactions. Reactive quantum molecular dynamics simulations with the lanl31 density functional tight binding model have been used to compute the delay time before the thermal explosion of the secondary explosives erythritol tetranitrate (ETN), pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), trinitrotolune (TNT), and 3,3'-diamino-4,4'-azoxyfurazan (DAAF) as a function of the initial temperature and pressure. The delay time to explosion data are consistent with Arrhenius chemical kinetics, which is expected for thermally activated processes in materials and in accord with experimental measurements. The critical temperatures required for the materials to undergo prompt explosions display the same dependence on drop height as was observed by Wenograd. Hence, quantum-based reactive molecular dynamics simulations are potentially a tool for ranking the drop-weight impact sensitivity and handling safety of explosives.
机译:滴重撞击试验常规用于表征爆炸物的处理安全性。许多研究试图将能量分子和材料的各种物理和化学性质连接到其测量的影响敏感性。 1960年代初的文培证明了下降高度对爆炸物需要进行迅速反应所需的临界温度依赖性。具有LANL31密度功能紧密结合模型的反应性量子分子动力学模拟已被用于计算二次炸药红醇(ETN),季戊四醇四硝酸(PETN),环四亚甲基三硝胺(RDX),环四亚甲基四硝胺( HMX),TrinitroLone(TNT)和3,3'-二氨基-4,4'-亚氮氧基(DAAF)作为初始温度和压力的函数。爆炸数据的延迟时间与Arrhenius化学动力学一致,预期用于材料中的热活化过程和实验测量。经过迅速爆炸的材料所需的临界温度显示随文培观察到的降低高度相同的依赖性。因此,量子基的反应性分子动力学模拟可能是用于排名爆炸物的滴重量敏感性和处理安全性的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号