...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >TRPM4 Conductances in Thalamic Reticular Nucleus Neurons Generate Persistent Firing during Slow Oscillations
【24h】

TRPM4 Conductances in Thalamic Reticular Nucleus Neurons Generate Persistent Firing during Slow Oscillations

机译:TRPM4在丘脑网状核神经元中的导电在缓慢振荡期间产生持续的烧制

获取原文
获取原文并翻译 | 示例
           

摘要

During sleep, neurons in the thalamic reticular nucleus (TRN) participate in distinct types of oscillatory activity. While the reciprocal synaptic circuits between TRN and sensory relay nuclei are known to underlie the generation of sleep spindles, the mechanisms regulating slow (<1 Hz) forms of thalamic oscillations are not well understood. Under in vitro conditions, TRN neurons can generate slow oscillations in a cell-intrinsic manner, with postsynaptic Group 1 metabotropic glutamate receptor activation triggering long-lasting plateau potentials thought to be mediated by both T-type Ca2+ currents and Ca2+-activated nonselective cation currents (ICAN). However, the identity of ICAN and the possible contribution of thalamic circuits to slow rhythmic activity remain unclear. Using thalamic slices derived from adult mice of either sex, we recorded slow forms of rhythmic activity in TRN neurons, which were driven by fast glutamatergic thalamoreticular inputs but did not require postsynaptic Group 1 metabotropic glutamate receptor activation. For a significant fraction of TRN neurons, synaptic inputs or brief depolarizing current steps led to long-lasting plateau potentials and persistent firing (PF), and in turn, resulted in sustained synaptic inhibition in postsynaptic relay neurons of the ventrobasal thalamus (VB). Pharmacological approaches indicated that plateau potentials were triggered by Ca2+ influx through T-type Ca2+ channels and mediated by Ca2+- and voltage-dependent transient receptor potential melastatin 4 (TRPM4) channels. Together, our results suggest that thalamic circuits can generate slow oscillatory activity, mediated by an interplay of TRN-VB synaptic circuits that generate rhythmicity and TRN cell-intrinsic mechanisms that control PF and oscillation frequency.
机译:在睡眠期间,丘脑网状核(TRN)中的神经元参与不同类型的振荡活动。虽然已知Trn和感觉中继核之间的倒数突触电路是睡眠主轴的产生,但是调节缓慢(<1 hz)形式的丘脑振荡的机制也不受欢迎。在体外条件下,Trn神经元可以以细胞内在方式产生缓慢的振荡,其中突触后基团1触发延长持久的平台电位认为通过T型Ca2 +电流和Ca2 +活化的非选择性阳离子电流介导的延长高原潜力(我可以)。然而,ICAN的身份和丘脑电路对节律活动缓慢的可能贡献仍然尚不清楚。使用源自任何性别的成年小鼠的丘脑切片,我们在TRN神经元中记录了慢性形成的节奏活性,这是由快速谷氨酸肌肉瘤投入驱动的,但不需要突触后组1代言谷氨酸受体激活。对于显着的Trn神经元,突触输入或简短地降极地将电流步骤导致持久的高原电位和持续烧制(PF),导致口腔瘤丘脑(VB)的后腹膜中继神经元中持续突触抑制。药理学方法表明,通过T型Ca2 +通道通过Ca2 +流入触发平台电位,并由Ca2 +和电压依赖性瞬时受体潜在的素母囊4(TRPM4)通道介导。我们的结果表明,丘脑电路可以产生缓慢的振荡活动,通过TRN-VB突触电路的相互作用介导,所述TRN-VB突触电路的相互作用产生节奏和控制PF和振荡频率的TRN细胞内联机构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号