首页> 外文期刊>The Journal of Chemical Physics >RRKM and master equation kinetic analysis of parallel addition reactions of isomeric radical intermediates in hydrocarbon flames
【24h】

RRKM and master equation kinetic analysis of parallel addition reactions of isomeric radical intermediates in hydrocarbon flames

机译:烃火焰中异构自由基中间体并联加法反应的RRKM和母版型动力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

We have calculated the temperature-dependent rate coefficients of the addition reactions of butadien2- yl (C4H5) and acroylyl (C3H3O) radicals with ethene (C2H4), carbon monoxide (CO), formaldehyde (H2CO), hydrogen cyanide (HCN), and ketene (H2CCO), in order to explore the balance between kinetic and thermodynamic control in these combustion-related reactions. For the C4H5 radical, the 1,3-diene form of the addition products is more stable than the 1,2-diene, but the 1,2-diene form of the radical intermediate is stabilized by an allylic delocalization, which may influence the relative activation energies. For the reactions combiningC(3)H(3)OwithC(2)H(4), CO, and HCN, the opposite is true: the 1,2-enone form of the addition products is more stable than the 1,3-enone, whereas the 1,3-enone is the slightly more stable radical species. Optimized geometries and vibrational modes were computed with the QCISD/aug-cc-pVDZ level and basis, followed by single-point CCSD(T)-F12a/cc-pVDZF12 energy calculations. Our findings indicate that the kinetics in all cases favor reaction along the 1,3 pathway for both the C4H5 and C3H3O systems. The Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical rate coefficients and subsequent solution of the chemical master equation were used to predict the time-evolution of our system under conditions from 500 K to 2000 K and from 10 fi 5 bar to 10 bars. Despite the 1,3 reaction pathway being more favorable for theC(4)H(5) system, our results predict branching ratios of the 1,2 to 1,3 product as high as 0.48 at 1 bar. Similar results hold for the acroylyl system under these combustion conditions, suggesting that under kinetic control the branching of these reactions may be much more significant than the thermodynamics would suggest. This effect may be partly attributed to the low energy difference between 1,2 and 1,3 forms of the radical intermediate. No substantial pressure-dependence is found for the overall forward reaction rates until pressures decrease below 0.1 bar. Published by AIP Publishing.
机译:我们已经计算了用乙烯(C2H4),一氧化碳(CO),甲醛(H2CO),氰化氢(HCN)和亚甲酰基(C3H3O)基团的加氢反应的温度依赖性速率系数。酮烯(H2CCO),以探讨这些燃烧相关反应中动力学和热力控制之间的平衡。对于C4H5基团,加成产物的1,3-二烯形式比1,2-二烯更稳定,但是通过烯丙基脱锁稳定的自由基中间体的1,2-二烯形式稳定,这可能影响相对激活能量。对于结合的反应(3)H(3)H(3)OWithc(2)H(4),CO和HCN,相反的是真:添加剂的1,2-烯酮形式比1,3-更稳定烯酮,而1,3烯酮是稍微稳定的自由基物种。使用QCISD / AUG-CC-PVDZ水平计算优化的几何和振动模式,然后是单点CCSD(T)-F12A / CC-PVDZF12能量计算。我们的研究结果表明,所有病例中的动力学都赞美C4H5和C3H3O系统的1,3途径的反应。水稻 - rusperger-kassel-marcus(RRKM)微常规速率系数和化学母部方程的后续解决方案用于预测500 k至2000 k的条件下的系统的时间演变,并从10个5巴到10栏。尽管1,3反应途径对TheC(4)H(5)系统更有利,但我们的结果预测了1,2-1,3产物的支化比,高达0.48在1巴。与本燃烧条件下acroylyl系统相似的结果,表明在动力控制下这些反应的分支可能比热力学提出要重大。该效果可以部分地归因于基团中间体的1,2和1,3形式之间的低能量差。对于总体前进反应速率没有发现大规模的压力依赖性,直到压力降低0.1巴。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号