...
首页> 外文期刊>The Journal of Chemical Physics >Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models
【24h】

Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

机译:水合电子兴奋状态松弛的温度依赖性。 I.腔体和非腔模型的谐振拉曼和泵探针瞬态吸收光谱的模拟预测

获取原文
获取原文并翻译 | 示例
           

摘要

We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments reveal stimulated emission from the excited state with an amplitude and lifetime that decreases with increasing temperature, a result in contrast to the lack of stimulated emission predicted by the cavity model but in good agreement with the non-cavity model. Overall, until ab initio calculations describing the non-adiabatic excited-state dynamics of an excess electron with hundreds of water molecules at a variety of temperatures become computationally feasible, the simulations presented here provide a definitive route for connecting the predictions of cavity and non-cavity models of the hydrated electron with future experiments. Published by AIP Publishing.
机译:我们使用单电子非绝热混合量子/经典模拟来探索地面结构和水合电子的兴奋状态松弛动态的温度依赖性。我们比较传统腔体图像的结果和水合电子的更新非腔模型,并对未来的实验中的不同可能的结构模型进行明确的预测。我们发现传统的腔模型在恒定密度下没有恒温变化,导致预测的共振拉曼光谱基本上无关。相反,非腔模型预测水合电子的共振拉曼O-H拉伸的蓝色偏移,随着温度的增加。缺乏腔模型的温度依赖性地位结构变化也导致在光透镜之后水合电子的激发态寿命和热处理冷却时间的温度较小的预测。这与非腔模型的预测鲜明对比,其中兴奋状态寿命和热处理冷却时间都预期随着温度的增加而显着降低。基于模拟的预测应通过未来的时间分辨光电子能谱实验直接可测试。最后,预测兴奋状态寿命和热处理冷却时间的温度依赖性差异也导致水合电子的不同预测的泵探针瞬态吸收光谱,作为温度的函数。我们进行这样的实验并在纸上描述它们II [E. P.Farr等人。,J.Chem。物理。 147,074504(2017)],并找到激发状态寿命和热处理冷却时间的变化,温度与非腔模型的预测相匹配。特别地,该实验揭示了从激发状态的激发刺激发射,振幅和寿命随着温度的增加而降低,结果与腔模型所预测的缺乏刺激的发射相反,但与非腔模型良好的一致性。总体而言,直到描述在各种温度下的数百个水分子的过量电子的非绝热激发状态动态的AB初始兴奋状态变为计算可行的情况下,这里呈现的模拟提供了用于连接腔和非的预测的明确路线液体模型的水合电子与未来实验。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号