首页> 外文期刊>The Journal of Chemical Physics >Mechanism of the fcc-to-hcp phase transformation in solid Ar
【24h】

Mechanism of the fcc-to-hcp phase transformation in solid Ar

机译:固体AR中FCC - HCP相变的机制

获取原文
获取原文并翻译 | 示例
           

摘要

We present an atomistic description of the fcc-to-hcp transformation mechanism in solid argon ( Ar) obtained from transition path sampling molecular dynamics simulation. The phase transition pathways collected during the sampling for an 8000-particle system reveal three transition types according to the lattice deformation and relaxation details. In all three transition types, we see a critical accumulation of defects and uniform growth of a less ordered transition state, followed by a homogeneous growth of an ordered phase. Stacking disorder is discussed to describe the transition process and the cooperative motions of atoms in {111} planes. We investigate nucleation with a larger system: in a system of 18 000 particles, the collective movements of atoms required for this transition are facilitated by the formation and growth of stacking faults. However, the enthalpy barrier is still far beyond the thermal fluctuation. The high barrier explains previous experimental observations of the inaccessibility of the bulk transition at low pressure and its sluggishness even at extremely high pressure. The transition mechanism in bulk Ar is different from Ar nanoclusters as the orthorhombic intermediate structure proposed for the latter is not observed in any of our simulations. Published by AIP Publishing.
机译:我们介绍了从过渡路径采样分子动力学模拟中获得的固体氩(AR)中FCC-〜HCP变换机制的原子描述。在用于8000粒子系统的采样期间收集的相转变途径显示了根据晶格变形和弛豫细节的三种过渡类型。在所有三种过渡类型中,我们看到缺陷的临界积累和均匀的过渡状态的均匀生长,然后是有序相的均匀生长。讨论了堆叠障碍以描述{111}平面中的过渡过程和原子的合作运动。我们用更大的系统调查成核:在18 000个颗粒的系统中,通过堆叠故障的形成和生长,促进了这种转变所需的原子的集体运动。然而,焓垒仍远远超出热波动。高屏障解释了以前的实验观察,其散装过渡处于低压下的难以接近的观察,即使在极高的压力下也是缓慢的。由于我们的任何模拟中未观察到后者所提出的正交中间结构,散装AR中的过渡机制与AR纳米能器不同。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号