...
首页> 外文期刊>The Journal of Chemical Physics >Frozen-mode small polaron quantum master equation with variational bound for excitation energy transfer in molecular aggregates
【24h】

Frozen-mode small polaron quantum master equation with variational bound for excitation energy transfer in molecular aggregates

机译:冻结模式小极化量子母部母部方程,分解突起的分子聚集体激励能量转移

获取原文
获取原文并翻译 | 示例

摘要

The small polaron quantum master equation (SPQME) is a powerful method for describing quantum dynamics in molecular systems. However, in the slow-bath regime where low-frequency vibrational modes dominate the dynamics, the fully dressed small polaron coordinates lead to errors in the SPQME theory. Furthermore, low-frequency modes also cause infrared divergence in the SPQME method, making the theory applicable only to systems described by spectral densities of the super-Ohmic form. In this study, we propose to treat these low-frequency vibrations as dynamically arrested frozen modes in a semiclassical representation and apply the small polaron representation only to the high-frequency vibrations. Furthermore, we show that a variational polaron approach can be utilized to determine the frequency upper bound of the frozen modes, allowing dynamical simulations free of manually tuned parameters. This frozen-mode SPQME is applied to models describing excitation energy transfer (EET) in molecular aggregates and comprehensively compared with the quasiadiabatic path integral method a well as the Redfield theory to demonstrate the applicability of this new method. We show that errors due to slow baths in the original SPQME theory are significantly reduced by the frozen-mode approximation. More significantly, we show that the new approach successfully extends the SPQME theory to be applicable to systems with the Drude-Lorentz spectral density, resulting in a great expansion of the applicability of the SPQME theory for EET problems. In summary, we demonstrate a frozen-mode SPQME that provides efficient and accurate simulations of EET dynamics of molecular systems in a broad parameter regime.
机译:小极化子量子总体方程(SPQME)是用于描述分子系统中量子动态的强大方法。然而,在低频振动模式主导动态的缓慢浴室中,完全穿着的小极化坐标导致SPQME理论中的误差。此外,低频模式也引起SPQME方法中的红外发散,使得该理论仅适用于超级欧姆形式的光谱密度描述的系统。在这项研究中,我们建议将这些低频振动视为在半定读的冻结模式中,并仅将小极化子表示应用于高频振动。此外,我们表明可以利用变形优化的方法来确定冻结模式的频率上限,允许动态模拟不含手动调谐的参数。该冻结模式SPQME应用于描述分子聚集体中的激发能量转移(EET)的模型,并与准二模基路径整体方法A综合相比,作为Redfield理论,以证明这种新方法的适用性。我们表明,由于冻结模式近似,原始SPQME理论慢浴导致的误差显着降低。更重要的是,我们表明新方法成功扩展了SPQME理论,适用于具有博客谱密度的系统,从而大大扩展了SPQME理论对EET问题的适用性。综上所述,我们展示了冻结模式SPQME提供分子体系的EET动力的高效,精确的模拟在广泛的参数制度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号