首页> 外文期刊>The Journal of Chemical Physics >Osmotic pressure of permeable ionic microgels: Poisson-Boltzmann theory and exact statistical mechanical relations in the cell model
【24h】

Osmotic pressure of permeable ionic microgels: Poisson-Boltzmann theory and exact statistical mechanical relations in the cell model

机译:渗透性离子微凝块的渗透压:泊松 - 博尔兹曼理论与细胞模型中的精确统计机械关系

获取原文
获取原文并翻译 | 示例
           

摘要

Ionic microgels are soft colloidal particles, composed of crosslinked polymer networks, which ionize and swell when dispersed in a good solvent. Swelling of these permeable, compressible particles involves a balance of electrostatic, elastic, and mixing contributions to the single-particle osmotic pressure. The electrostatic contribution depends on the distributions of mobile counterions and coions and of fixed charge on the polymers. Within the cell model, we employ two complementary methods to derive the electrostatic osmotic pressure of ionic microgels. In Poisson-Boltzmann (PB) theory, we minimize a free energy functional with respect to the electrostatic potential to obtain the bulk pressure. From the pressure tensor, we extract the electrostatic and gel contributions to the total pressure. In a statistical mechanical approach, we vary the free energy with respect to microgel size to obtain exact relations for the microgel electrostatic osmotic pressure. We present results for planar, cylindrical, and spherical geometries. For models of membranes and microgels with fixed charge uniformly distributed over their surface or volume, we derive analogs of the contact value theorem for charged colloids. We validate these relations by solving the PB equation and computing ion densities and osmotic pressures. When implemented within PB theory, the two methods yield identical electrostatic osmotic pressures for surface-charged microgels. For volume-charged microgels, the exact electrostatic osmotic pressure equals the average of the corresponding PB profile over the gel volume. We demonstrate that swelling of ionic microgels depends on the variation of the electrostatic pressure inside the particle and discuss implications for interpreting experiments.
机译:离子微凝胶是软胶体颗粒,由交联的聚合物网络组成,当在良好的溶剂中分散时电离和膨胀。这些可渗透的可压缩颗粒的肿胀涉及静电,弹性和混合贡献的平衡,对单粒子渗透压。静电贡献取决于移动抗衡离子和涂层的分布以及聚合物上的固定电荷。在细胞模型中,我们采用两种互补方法来得出离子微凝胶的静电渗透压。在Poisson-Boltzmann(PB)理论中,我们最小化了对静电电位的自由能功能,以获得散装压力。从压力张量,我们将静电和凝胶贡献提取到总压力。在统计机械方法中,我们对微凝胶尺寸的自由能量变化以获得微凝胶静电渗透压的确切关系。我们为平面,圆柱形和球形几何形状提出了结果。对于具有固定电荷的膜和微凝胶的模型均匀分布在其表面或体积上,我们导出了带电胶体的接触值定理的类似物。我们通过求解PB方程和计算离子密度和渗透压来验证这些关系。在PB理论内实施时,两种方法屈服于用于表面带状微凝胶的相同静电渗透压。对于蓄能量的微胶体,精确的静电渗透压等于相应的PB轮廓在凝胶体积上等于相应的平均值。我们证明离子微凝胶的溶胀取决于粒子内静电压力的变化,并讨论对解释实验的影响。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号