首页> 外文期刊>The Journal of Chemical Physics >An AIMD study of dissociative chemisorption of methanol on Cu(111) with implications for formaldehyde formation
【24h】

An AIMD study of dissociative chemisorption of methanol on Cu(111) with implications for formaldehyde formation

机译:甲醇对Cu(111)解离化学吸附的旨在研究甲醛形成的影响

获取原文
获取原文并翻译 | 示例
           

摘要

An important industrial process is methanol steam reforming, which is typically used in conjunction with copper catalysts. However, little agreement exists on the reaction mechanisms involved on a copper catalyst. Therefore, we have performed research yielding additional insight into the reaction mechanism for dissociative chemisorption of methanol on Cu(111) using ab initio molecular dynamics, supported by static calculations of the molecule-surface interaction with density functional theory. Our work predicts that after the initial dissociation, formaldehyde is formed through three different mechanisms. Additionally, it is observed that at high energy, CH cleavage is the dominant pathway instead of the formerly presumed OH cleavage pathway. Finally, in order to describe the interaction of methanol with the metal surface, the SRP32-vdW functional is used, which has been previously developed and tested for CHD3 on Ni(111), Pt(111), and Pt(211) using the Specific Reaction Parameter (SRP) approach. In this work, the SRP32-vdW functional is applied to methanol on Cu(111) as well, in the hope that future experiments can validate the transferability of the SRP32-vdW functional to chemically related molecule-metal surface systems. Published under license by AIP Publishing.
机译:重要的工业过程是甲醇蒸汽重整,其通常与铜催化剂结合使用。然而,对铜催化剂涉及的反应机制存在很少的协议。因此,我们使用AB Initio分子动力学对Cu(111)的解离化学吸附的反应机制进行了额外了解,通过与密度泛函理论的分子表面相互作用的静态计算支持,进一步了解Cu(111)的反应机制。我们的工作预测,在初始解离后,通过三种不同的机制形成甲醛。另外,观察到,在高能量时,CH切割是主要的途径,而不是以前推测的OH切割途径。最后,为了描述甲醇与金属表面的相互作用,使用SRP32-VDW功能,其先前已经在Ni(111),Pt(111)和Pt(211)上的CHD3进行了测试具体反应参数(SRP)方法。在这项工作中,SRP32-VDW功能也适用于Cu(111)的甲醇(111),希望未来的实验可以验证SRP32-VDW功能对化学相关分子 - 金属表面系统的可转移性。通过AIP发布在许可证下发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号