...
首页> 外文期刊>The Journal of Chemical Physics >The thermodynamics of a liquid-solid interface at extreme conditions: A model close-packed system up to 100 GPa
【24h】

The thermodynamics of a liquid-solid interface at extreme conditions: A model close-packed system up to 100 GPa

机译:极端条件下液体固体界面的热力学:型号封闭式系统,高达100 GPA

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The first experimental insight into the nature of the liquid-solid interface occurred with the pioneering experiments of Turnbull, which simultaneously demonstrated both that metals could be deeply undercooled (and therefore had relatively large barriers to nucleation) and that the inferred interfacial free energy( )gamma was linearly proportional to the enthalpy of fusion [D. Turnbull, J. Appl. Phys. 21, 1022 (1950)]. By an atomistic simulation of a model face-centered cubic system via adiabatic free energy dynamics, we extend Turnbull's result to the realm of high pressure and demonstrate that the interfacial free energy, evaluated along the melting curve, remains linear with the bulk enthalpy of fusion, even up to 100 GPa. This linear dependence of gamma on pressure is shown to be a consequence of the entropy dominating the free energy of the interface in conjunction with the fact that the entropy of fusion does not vary greatly along the melting curve for simple monoatomic metals. Based on this observation, it appears that large undercoolings in liquid metals can be achieved even at very high pressure. Therefore, nucleation rates at high pressure are expected to be non-negligible, resulting in observable solidification kinetics. Published by AIP Publishing.
机译:第一次实验洞察液体固体界面性质的实​​验洞察转盘的先驱试验,同时证明金属可以深入过冷(因此对成核的屏障相对较大),并且推断的界面自由能量()伽玛与融合的焓线性成比例[D. Turnbull,J. Appl。物理。 21,1022(1950)]。通过绝热能量动力学的模型以型号为中心的立方系统的原子模拟,我们将Turnbull结果延伸到高压的领域,并证明沿熔化曲线评估的界面自由能保持线性与融合的散装焓保持线性甚至高达100 GPA。伽玛对压力的这种线性依赖性被认为是将界面的自由能的结果结合在于结合融合的熵沿着简单的单原制金属的熔化曲线而变化的事实,这是界面的自由能。基于该观察,似乎即使在非常高的压力下也可以实现液体金属中的大型过水。因此,预期高压下的成核率是不可忽略的,导致可观察到的凝固动力学。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号