首页> 外文期刊>The Journal of Chemical Physics >Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water
【24h】

Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water

机译:使用核量子效应解开电子吸收光谱:光活性黄蛋白和水中的绿色荧光蛋白发色团

获取原文
获取原文并翻译 | 示例
           

摘要

Many physical phenomena must be accounted for to accurately model solution-phase optical spectral line shapes, from the sampling of chromophore-solvent configurations to the electronic-vibrational transitions leading to vibronic fine structure. Here we thoroughly explore the role of nuclear quantum effects, direct and indirect solvent effects, and vibronic effects in the computation of the optical spectrum of the aqueously solvated anionic chromophores of green fluorescent protein and photoactive yellow protein. By analyzing the chromophore and solvent configurations, the distributions of vertical excitation energies, the absorption spectra computed within the ensemble approach, and the absorption spectra computed within the ensemble plus zero-temperature Franck-Condon approach, we show how solvent, nuclear quantum effects, and vibronic transitions alter the optical absorption spectra. We find that including nuclear quantum effects in the sampling of chromophore-solvent configurations using ab initio path integral molecular dynamics simulations leads to improved spectral shapes through three mechanisms. The three mechanisms that lead to line shape broadening and a better description of the high-energy tail are softening of heavy atom bonds in the chromophore that couple to the optically bright state, widening the distribution of vertical excitation energies from more diverse solvation environments, and redistributing spectral weight from the 0-0 vibronic transition to higher energy vibronic transitions when computing the Franck-Condon spectrum in a frozen solvent pocket. The absorption spectra computed using the combined ensemble plus zero-temperature Franck-Condon approach yield significant improvements in spectral shape and width compared to the spectra computed with the ensemble approach. Using the combined approach with configurations sampled from path integral molecular dynamics trajectories presents a significant step forward in accurately modeling the absorpt
机译:许多物理现象必须考虑到准确地模拟溶液相光谱线形状,从发色团溶剂配置的采样到导致导致振动细结构的电子振动过渡。在这里,我们彻底探讨了核量子效应,直接和间接溶剂效应的作用,以及在绿色荧光蛋白和光活性黄色蛋白的含水溶胀的阴离子发色团的光谱中计算的振动效应。通过分析发色团和溶剂配置,垂直励磁能量的分布,在集合方法中计算的吸收光谱,以及在集合体上计算的吸收光谱加上零温度Franck-Condon方法,我们展示了如何溶剂,核量子效应,和颤音过渡改变了光学吸收光谱。我们发现,使用AB Initio路径整体分子动力学模拟的发色团溶剂配置采样在包括核量子效应导致通过三种机制改善光谱形状。导致线形状的三种机制和更好地描述的高能量尾部在发色团中的重型原子键软化为光学亮状态,从更多样化的溶剂环境中扩大垂直励磁能量的分布,以及在将冷冻溶剂袋中计算FRANCK-CONDON光谱时,从0-0振动过渡到更高的能量振动过渡的谱重量。使用组合的集合加零温FRANCK-CONDON方法计算的吸收光谱在与通过集合方法计算的光谱相比,频谱形状和宽度的显着改善。使用具有从路径整体分子动力学轨迹采样的配置的组合方法在准确地建模中向前迈出了重要的一步

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号