首页> 外文期刊>The Journal of Chemical Physics >Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes
【24h】

Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

机译:带电氢同位素的石墨烯膜的量子机械渗透的理论描述

获取原文
获取原文并翻译 | 示例
           

摘要

It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest. Published by AIP Publishing.
机译:最近已经表明,在存在施加的电压存在下,使用石墨烯膜作为核筛,氢和氘核可以彼此分离,导致较轻同位素的浓度增加10倍。虽然先前的研究,但实验和理论上的既有实验和理论,归因于膜表面附近各种同位素的各种同位素的振动零点能量(ZPE)的差异,我们提出了通过石墨烯膜的多维量子机械隧道影响了这一点质子渗透过程以基本的方式。我们执行环聚合物分子动力学计算,其中我们包括各种氢同位素的ZPE和隧道效应,因为它们渗透到300k附近的一系列温度范围内的石墨烯膜和计算速率常数。在捕获实验观察到的分离因子时,我们的计算表明各种同位素穿过石墨烯膜表面的横向运动是该筛分机制的重要组成部分。对该方法的多维量子机械性质的理解可以用于引导其他这种同位素富集过程的设计,用于各种原子和分子物种的感兴趣的。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号