首页> 外文期刊>The Journal of Chemical Physics >Molecular dynamics based enhanced sampling of collective variables with very large time steps
【24h】

Molecular dynamics based enhanced sampling of collective variables with very large time steps

机译:基于分子动力学的集体变量具有非常大的时间步骤的增强采样

获取原文
获取原文并翻译 | 示例
           

摘要

Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten-to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nose-Hoover chains or Nose-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration. Published by AIP Publishing.
机译:增强针对一组集体变量的采样技术和使用分子动力学作为驱动发动机的应用在计算分子科学中,作为探索复杂系统的自由能景观的手段。作为采样的基本驱动器的使用分子动力学需要引入时间步长,其幅度受到系统中最快的运动的限制。虽然标准多次步进方法允许用于较慢和计算更昂贵的力的较大时间步骤,但时间步长的最大可实现的增加受到谐振现象的限制,其不可分割地耦合快速和缓慢的动作。最近,我们引入了用于解决该共振问题的分子动力学的确定性和随机共振多时步骤算法,并与标准多时间步长算法相比,在大的时间步骤中允许在大的时间步骤中的10至2倍的增益[P.P. Minary等人。,phy。 rev. lett。 93,150201(2004); B. Leimkuhler等人,摩尔。物理。 111,3579-3594(2013)]。这些方法基于对等因速约束的施加,将物理系统耦合到鼻孔 - 胡佛链或鼻子胡佛Langevin方案。在本文中,我们展示了如何使这些方法适应集体可变基于增强的采样技术,特别是绝热自由能动力学/温度加速的分子动力学,统一的自由能动力学,以及扩展,元动力学,从而允许模拟采用这些模拟采用同样大的时间步长的方法。无功的增强抽样的不断多时步骤集成商的组合显着提高了构象勘探的效率。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号