...
首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Molecular dynamics simulation of amorphous polyethylene (PE) under cyclic tensile-compressive loading below the glass transition temperature
【24h】

Molecular dynamics simulation of amorphous polyethylene (PE) under cyclic tensile-compressive loading below the glass transition temperature

机译:在玻璃化转变温度下循环拉伸负载下无定形聚乙烯(PE)的分子动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

The intensive applications of polymer in many engineering composites have imposed an urgent need on the understanding of the mechanical behavior and deformation mechanism of the polymer under cyclic loading. This paper presents the results of a numerical study on the behavior of amorphous polyethylene (PE) subjected to cyclic tensile and compressive loads using molecular dynamics (MD) simulations, based on a united-atom approach. The effects of polymer chain length, the number of chains and strain rates are studied at first. Hysteresis loops, as well as visco-elastoplastic of PE under cyclic loading predicted by MD simulations are qualitatively in agreement with previous experiments. Three distinct hysteresis loops observed in successive loading-unloading reveal the contribution of elasticity, viscosity and plasticity under different loading strains, respectively. The rubber-like recovery behavior of PE at low temperature is attributed to that the mobility of molecular chains is constrained at low temperature. Energy analysis shows that the van der Waals energy and dihedral angle energy are considered to be the primary factors that affects the cyclic behavior of PE.
机译:聚合物在许多工程复合材料密集型应用程序都强加在循环载荷下的聚合物的力学性能和变形机理的认识的迫切需要。本文介绍了使用分子动力学(MD)模拟对循环拉伸和压缩负荷进行的无定形聚乙烯(PE)的数值研究的结果,基于联合原子方法。首先研究了聚合物链长度,链条数和应变率的影响。在MD模拟预测的循环载荷下PE的磁滞回路以及PE的粘合弹性塑料与先前的实验一致。在连续的装卸中观察到三个不同的滞后环,揭示了不同负载菌株下弹性,粘度和可塑性的贡献。低温下PE的橡胶状恢复行为归因于分子链的迁移性在低温下约束。能量分析表明,范德华能量和二偏角能量被认为是影响PE循环行为的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号