...
首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Molecular mechanism of material deformation and failure in butadiene rubber: Insight from all-atom molecular dynamics simulation using a bond breaking potential model
【24h】

Molecular mechanism of material deformation and failure in butadiene rubber: Insight from all-atom molecular dynamics simulation using a bond breaking potential model

机译:丁二烯橡胶材料变形和失效的分子机制:使用粘合断裂潜在模型的全原子分子动力学模拟的洞察

获取原文
获取原文并翻译 | 示例

摘要

Microscopic details of the tensile behavior of disulfide crosslinked cis-1,4-polybutadiene are unveiled using atomistic molecular dynamics (MD) simulations. Stepwise deformation and relaxation method was employed to determine the tensile behavior and underlying molecular mechanism was clarified by analyzing the MD trajectory. Calculated stress-strain curve well reproduces the experimental observation. We found that tensile behavior of rubber is predominantly correlated to its microscopic structural transformation, which is primarily governed by the crosslinking topology. Strain dependence of the structural transformation due to crosslinking of polymer chains results in hyperelastic tensile behavior of rubber. Rapid increase in the stress for initial strain arises due to the realignment of randomly oriented polybutadiene chains along the pulling direction. For the intermediate strain, polybutadiene chains elongate upon the application of deforming force, giving rise to a gentle increase in the stress. However, elongation of polybutadiene chains is non-uniform due to system topology. This gives rise to the heterogeneity in the system, resulting in formation and of the void. Sharp increase in the stress at large strain can be attributed to extensibility of the polybutadiene chains. Finally, material failure transpires by dissociation of crosslinking chemical bonds.
机译:使用原子分子动力学(MD)模拟推出二硫键交联顺式CIS-1,4-聚丁二烯的显微镜细节。通过分析MD轨迹,采用逐步变形和弛豫方法确定拉伸行为,并通过分析MD轨迹阐明依赖性分子机制。计算的应力 - 应变曲线孔再现实验观察。我们发现橡胶的拉伸行为主要与其微观结构转变相关,主要由交联拓扑控制。结构转化由于聚合物链的交联而依赖性的依赖性导致橡胶的高痉挛拉伸行为。由于随机取向的聚丁二烯链沿着拉动方向,初始应变的应力的快速增加产生。对于中间菌株,聚丁二烯链在施加变形力时伸长,从而产生压力的温和增加。然而,由于系统拓扑结构,聚丁二烯链的伸长是不均匀的。这引起了系统中的异质性,导致形成和空隙。大应变的应力急剧增加可归因于聚丁二烯链的延长性。最后,通过解离化学键来解离化学键的材料失效传输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号