...
首页> 外文期刊>Physics of plasmas >Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST
【24h】

Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

机译:DIII-D高域β制度的限制改善及其在东部稳态H模式的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high β_p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β_p regime, is maintained when the scenario is extended from q_(95) ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E×B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a bp threshold for large-radius ITB formation in the high β_p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a β_N scan and the other for a q_(95) scan. They both give the same β_p threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing β_p is consistent with transport modeling. The progress toward the high bp scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high β_p scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high β_p regime can be extended to a lower safety factor and very low
机译:DIII-D系统的实验和建模研究显示了完全非诱导高β_P等离子体的吸引力。 DIII-D的实验表明,当方案从Q_(95)〜12到7延伸时,大径内部传输屏障(ITB)是在高β_P制度中提供出色的禁止禁止的关键特征。接近零环形旋转。通过与E×B剪切效应显示显性新古典离子能量传输的陀螺流体模型预测限制与旋转的鲁棒性。我们发现,湍流抑制的物理机制是Shafranov Shift,这是必不可少的,并在DIII-D上的高β_P场景中形成大半径ITB形成的BP阈值。这通过两个不同的参数扫描实验确认,一个用于β_N扫描,另一个用于Q_(95)扫描。它们在实验中,它们都在1.9时给出相同的β_p阈值。随着β_P降低β_P增加热传输的实验趋势与运输建模一致。报道了对实验高级超导托卡马克(东)高BP情景的进展。延伸高β_P场景的第一步是DIII-D在东部长脉冲的第一步是在东部与ITB建立长脉冲H模式。本文显示了前61级完全非电感的H模式,具有静止的ITB功能,并在最近的东部实验中积极冷却迭代钨方位器。还介绍了较低的混合波作为优化东方实验中的当前轮廓的关键工具的成功使用。结果表明,随着电子密度增加,全部非感应电流曲线拓宽。改进的理解和建模能力也用于开发中国融合工程测试反应堆的先进方案。总体而言,这些结果提供了鼓励,即高β_P制度可以扩展到较低的安全系数和非常低

著录项

  • 来源
    《Physics of plasmas》 |2017年第2期|共11页
  • 作者单位

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    General Atomics P.O. Box 85608 San Diego California 92186-5608 USA;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Princeton Plasma Physics Laboratory P. O. Box 451 Princeton New Jersey 08543 USA;

    Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    University of Wisconsin-Madison Madison Wisconsin 53706 USA;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Lawrence Livermore National Laboratory Livermore California 94551 USA;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    General Atomics P.O. Box 85608 San Diego California 92186-5608 USA;

    General Atomics P.O. Box 85608 San Diego California 92186-5608 USA;

    General Atomics P.O. Box 85608 San Diego California 92186-5608 USA;

    General Atomics P.O. Box 85608 San Diego California 92186-5608 USA;

    General Atomics P.O. Box 85608 San Diego California 92186-5608 USA;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

    Institute of Plasma Physics Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

    Confinement; improvement; poloidal;

    机译:限制;改善;面为单;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号