...
首页> 外文期刊>Physics of plasmas >Compressible Kolmogorov flow in strongly coupled dusty plasma using molecular dynamics and computational fluid dynamics. II. A comparative study
【24h】

Compressible Kolmogorov flow in strongly coupled dusty plasma using molecular dynamics and computational fluid dynamics. II. A comparative study

机译:使用分子动力学和计算流体动力学,压缩KOLMOGOROV在强耦合的尘土飞离等离子体中流动。 II。 比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we perform comparative studies of compressible Kolmogorov flow in the two-dimensional strongly coupled dusty plasma by means of atomistic or molecular dynamics (MD) and continuum or computational fluid dynamics (CFD) methods. Recently, using MD simulation, generation of molecular shear heat at the atomistic level is shown to reduce the average coupling strength of the system and destruct the vortical structures. To suppress the molecular heat, a novel method of a thermostat, namely, the configurational thermostat is introduced by which the microscale heat generated by the shear flow has shown to be thermostatted out efficiently without compromising the large scale vortex dynamics. While using a configurational thermostat, it has been found that the growth rate obtained from both the studies is the same with the marginal difference. To make the comparison with the continuum fluid model, we perform the same study using the generalised hydrodynamic model, wherein molecular shear heating phenomena is completely absent, however, viscous dissipation is there at the macroscale level. For this purpose, an Advanced Generalised SPECTral Code has been developed to study the linear and nonlinear aspects of the Kolmogorov flow in the incompressible and compressible limit for viscoelastic fluids. All the phenomenological parameters used in CFD simulations have been calculated from MD simulations. Code is benchmarked against the eigen value solver in the linear regime. Linear growth-rates calculated from the phenomenological fluid model is found to be close to that obtained from MD simulation for the same set of input parameters. The transition from laminar to turbulent flow has been found at a critical value of Reynolds number R-c in both the macroscopic (CFD) and microscopic (MD) simulation. R-c in MD is smaller than the one obtained by CFD simulation. In the nonlinear regime of CFD, the mode becomes unstable and vortex formation happens earlier than in MD. The pe
机译:在本文中,我们通过原子或分子动力学(MD)和连续核或计算流体动力学(CFD)方法对二维强耦合粉尘等离子体进行可压缩Kolmogorov流程的比较研究。最近,使用MD仿真,显示原子级别的分子剪切热产生,以降低系统的平均耦合强度和破坏涡流结构。为了抑制分子热量,引入了一种新的恒温器的方法,即通过剪切流程产生的微观热量,通过其显示在不损害大规模涡流动态的情况下高效地散热。在使用配置恒温器的同时,已经发现从研究中获得的生长速率与边际差异相同。为了使比较与连续体液模型进行比较,我们使用广义流体动力学模型进行相同的研究,其中分子剪切加热现象完全不存在,然而,在宏观级水平处存在粘性耗散。为此目的,已经开发了一种先进的广义光谱码来研究粘弹性流体的不可压缩和可压缩极限中Kolmogorov流程的线性和非线性方面。 CFD仿真中使用的所有现象学参数已经从MD仿真计算。代码是针对线性制度中的特征值求解器的基准测试。从现象流体模型计算的线性生长率被发现接近从MD模拟获得的相同输入参数。从层流到湍流的过渡已经发现在雷诺数R-C的同时在宏观(CFD)的临界值和显微镜(MD)模拟。 MD中的R-C小于CFD仿真而获得的R-C。在CFD的非线性制度中,模式变得不稳定,涡流形成比MD更早。体育

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号