...
首页> 外文期刊>Physics of plasmas >Numerical investigation of plasma properties for the microwave discharge ion thruster mu 10 using PIC-MCC simulation
【24h】

Numerical investigation of plasma properties for the microwave discharge ion thruster mu 10 using PIC-MCC simulation

机译:微波排放离子推进器MU 10使用PIC-MCC模拟的数值研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper reports the numerical investigation of plasma properties for the microwave discharge ion thruster mu 10. The model consists of a particle in cell simulation and a Monte Carlo collision simulation. The results indicate that the plasma density and the electron temperature in the confined region are larger than those in other regions and are qualitatively consistent with probe measurements. Moreover, we traced the trajectories of charged particles to investigate the plasma generation and transport. The electron trajectories indicate that electrons are strongly confined by the mirror magnetic field and the sheath, which indicates that the confinement depends on the electron energy. As a result, the electron energy distribution function is a combination of two Maxwellian distributions. Although the hot electrons account for 3.4% of all electrons, they account for 50.1% of the ionization and can generate plasma with an excitation loss of 1/3 of that of cold electrons. The ion trajectories indicate that they are affected by the magnetic field. To investigate the effect of the magnetic field on the transport, we evaluate the ion and electron current percentage toward the wall and compare with the wall surface percentage. The ion and electron current ratios differ because of diffusion with respect to the magnetic field. The ion current percentage is larger than the surface area percentage in the grid, which indicates that ions are transported to the grid more efficiently due to the magnetic field. Therefore, the effect on ions by the magnetic field is one of the most important criteria for microwave discharge ion thrusters.
机译:本文报道了微波排放离子推进器MU 10的等离子体性能的数值研究。该模型由细胞仿真中的粒子和蒙特卡罗碰撞模拟组成。结果表明,限制区域中的等离子体密度和电子温度大于其他区域中的血浆密度,并且与探针测量进行定性一致。此外,我们跟踪了带电粒子的轨迹来研究等离子体产生和运输。电子轨迹表明电子由镜磁场和护套强烈地限制,这表明该限制取决于电子能量。结果,电子能量分布函数是两个最高领域分布的组合。虽然热电子占所有电子的3.4%,但它们占电离的50.1%,并且可以产生耐冷电子的1/3的激发损失等离子体。离子轨迹表示它们受磁场的影响。为了研究磁场对运输的影响,我们将离子和电子电流百分比评估朝向壁,并与壁表面百分比进行比较。由于相对于磁场扩散,离子和电子电流比率不同。离子电流百分比大于电网中的表面积百分比,表示由于磁场而更有效地将离子输送到栅格。因此,磁场对离子的影响是微波排放离子推进器的最重要标准之一。

著录项

  • 来源
    《Physics of plasmas》 |2019年第7期|共7页
  • 作者单位

    Univ Tokyo Dept Aeronaut &

    Astronaut Chuo Ku 3-1-1 Yoshinodai Sagamihara Kanagawa 2525210 Japan;

    Univ Tokyo Dept Aeronaut &

    Astronaut Chuo Ku 3-1-1 Yoshinodai Sagamihara Kanagawa 2525210 Japan;

    Japan Aerosp Explorat Agcy Inst Space &

    Astronaut Sci Chuo Ku 3-1-1 Yoshinodai Sagamihara Kanagawa 2525210 Japan;

    Japan Aerosp Explorat Agcy Inst Space &

    Astronaut Sci Chuo Ku 3-1-1 Yoshinodai Sagamihara Kanagawa 2525210 Japan;

    Japan Aerosp Explorat Agcy Inst Space &

    Astronaut Sci Chuo Ku 3-1-1 Yoshinodai Sagamihara Kanagawa 2525210 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号