首页> 外文期刊>Physical review, B >Long-range interactions in the effective low-energy Hamiltonian of Sr2IrO4: A core-to-core resonant inelastic x-ray scattering study
【24h】

Long-range interactions in the effective low-energy Hamiltonian of Sr2IrO4: A core-to-core resonant inelastic x-ray scattering study

机译:SR2IRO4有效低能量Hamiltonian中的远程相互作用:一种核心谐振非弹性X射线散射研究

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated the electronic structure of Sr2IrO4 using core-to-core resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t(2g) orbitals are practically degenerate in their crystal-field energy. We uncovered that Sr2IrO4 and iridates in general are negative charge transfer systems with large covalency and a substantial oxygen ligand hole character in the Ir t(2g) Wannier orbitals. This has far reaching consequences, as not only the on-site crystal-field energies are determined by the long-range crystal structure, but, more significantly, magnetic exchange interactions will have long-range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d(5) materials that can host compasslike magnetic interactions.
机译:我们使用核心谐振非弹性X射线散射研究了SR2IRO4的电子结构。 使用AB初始函数型多平面式配体场理论计算可以很好地再现实验光谱,从而验证这些计算。 我们发现低能量,有效的IR T(2G)轨道在其晶体场能量中实际上变质。 我们发现SR2iro4和虹膜通常是具有大共价的负电荷转移系统和IR T(2G)Wannier轨道中的大型氧配体孔特征。 这对后果远远达到后果,而不仅仅是通过远程晶体结构决定的现场晶体场能量,而且更明显地,磁交换相互作用将在旋转方向上具有远程距离依赖性各向异性。 这些发现设定了用于设计COMPACTLIKE磁相互作用的D(5)材料的设计约束和显示途径。

著录项

  • 来源
    《Physical review, B》 |2017年第20期|共7页
  • 作者单位

    Max Planck Inst Chem Phys Solids Nothnitzerstr 40 D-01187 Dresden Germany;

    Max Planck Inst Chem Phys Solids Nothnitzerstr 40 D-01187 Dresden Germany;

    ESRF 71 Ave Martyrs F-38000 Grenoble France;

    Max Planck Inst Chem Phys Solids Nothnitzerstr 40 D-01187 Dresden Germany;

    Max Planck Inst Chem Phys Solids Nothnitzerstr 40 D-01187 Dresden Germany;

    Max Planck Inst Chem Phys Solids Nothnitzerstr 40 D-01187 Dresden Germany;

    ESRF 71 Ave Martyrs F-38000 Grenoble France;

    ESRF 71 Ave Martyrs F-38000 Grenoble France;

    ESRF 71 Ave Martyrs F-38000 Grenoble France;

    ESRF 71 Ave Martyrs F-38000 Grenoble France;

    Univ Tokyo Dept Phys 7-3-1 Hongo Tokyo 1130033 Japan;

    Univ Tokyo Dept Phys 7-3-1 Hongo Tokyo 1130033 Japan;

    Univ Tokyo Dept Phys 7-3-1 Hongo Tokyo 1130033 Japan;

    Max Planck Inst Chem Phys Solids Nothnitzerstr 40 D-01187 Dresden Germany;

    Max Planck Inst Chem Phys Solids Nothnitzerstr 40 D-01187 Dresden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号