首页> 外文期刊>Physics of fluids >Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel
【24h】

Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel

机译:在密闭的微通道中的单粒子和颗粒列车惯性聚焦引起的微观流动结构的直接测量

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the flow structures induced by inertial focusing of particles is essential in microfluidics-based applications. In spite of numerous studies described in the literature, such microscale flows have, until today, not been subject to quantitative experimental study. This paper describes the construction and validation of a micro-particle image velocimetry-based experimental setup to investigate particle-induced flows in a confined microchannel. The flow structures around a single inertially focused particle are first visualized and quantitatively measured at Reynolds numbers Re from 21 to 525. A ring-like vortex flow is observed to form in front of the particle at Re = 63 owing to an increased particle lag effect, and finally the reverse flow regime is replaced by a vortex flowregime (at Re = 105). This vortex flow produces a strong wall repulsive force and pushes the equilibrium position of the particle toward the channel center. Then, flows induced by both in-line and staggered particle trains are investigated (for 21 = Re = 105). For in-line particle trains, single-vortex flows are present between two neighboring particles on both sides of the channel. For staggered particle trains, two vortices rather than one are present between two neighboring particles at small Re (Re = 21), but this double-vortex flow develops into a single-vortex flow at relatively high Re (Re = 105). The present investigation helps in understanding particle dynamics and the mechanisms of interaction among particles, fluid, and channel walls. The experimental results presented here also provide validation data for further numerical and analytical studies. Published by AIP Publishing.
机译:了解通过术的惯性聚焦引起的流动结构在基于微流体的应用中是必不可少的。尽管文献中描述了许多研究,但这种微尺度流动,直到今天,不受定量实验研究。本文介绍了基于微粒图像速度的实验装置的构建和验证,以研究密闭的微通道中的粒子诱导的流动。在雷诺数Re 21至525,首先在雷诺数Re上可视化和定量测量围绕单个惯性聚焦的颗粒。由于粒子滞后效应增加,观察到在雷诺数Re的Reynold数量Re ..在Re = 63的颗粒前形成环状涡流流动并且最后,反向流动制度被涡流流量更换(在Re& = 105)取代。该涡流产生强壁排斥力,并将粒子的平衡位置推向通道中心。然后,研究了由串联和交错颗粒列车引起的流动(对于21℃,= 105)。对于在线颗粒列车,单涡流在通道两侧的两个相邻颗粒之间存在。对于交错的颗粒列车,在小Re(Re = 21)的两个相邻颗粒之间存在两个涡流而不是一个涡流,但是这种双涡流在相对高的Re(Re = 105)处的单涡流流入单涡流。本研究有助于了解粒子动力学和粒子,流体和通道壁之间的相互作用机制。这里呈现的实验结果还提供了用于进一步数值和分析研究的验证数据。通过AIP发布发布。

著录项

  • 来源
    《Physics of fluids》 |2018年第10期|共11页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Mech Engn Minist Educ Key Lab Power Machinery &

    Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Minist Educ Key Lab Power Machinery &

    Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Minist Educ Key Lab Power Machinery &

    Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Minist Educ Key Lab Power Machinery &

    Engn Shanghai 200240 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号