首页> 外文期刊>Physics of fluids >Assessment of large-scale forcing in isotropic turbulence using a closed Karman-Howarth equation
【24h】

Assessment of large-scale forcing in isotropic turbulence using a closed Karman-Howarth equation

机译:闭合Karman-Howarth等式评估各向同性湍流大规模迫使

获取原文
获取原文并翻译 | 示例
           

摘要

We attempt to model the effects of large-scale forcing on the statistical behavior of small scales in isotropic turbulence. More specifically, the effect of large-scale forcing on the second-order velocity structure function, S-2, in the region beyond the dissipative range, is analyzed via the transport equation for S-2 where a closure model for S-3, the third-order velocity structure function, is introduced. The model [L. Djenidi and R. A. Antonia, Fluid Turbulence Applications in Both Industrial and Environmental Topics, Marseille, 9-11 July, 2019, https://fab60.sciencesconf.org/] is based on a gradient type with an eddy-viscosity formulation and has the following expression: S3=-CS3(S2)2Epartial derivative S2 partial derivative r, where E is the mean rate of the turbulent kinetic energy dissipation, r is the spatial increment, and CS3 is a constant. The closed S-2-transport equation is further exploited to derive a model for S-2 for scales beyond the dissipative range. The model for S-2 takes the form S2=CK(Err)23 with Er=E1-Br/Re lambda1/2, where C-K is a constant, Re-lambda is the Taylor microscale Reynolds number, and the function B-r accounts for the effect of the large scales. The numerical solutions of the S-2 equation and the predictions based on the model for S-2 agree very well with direct numerical simulation data for steady-state forced homogeneous and isotropic turbulence. The solutions of the S-2-transport equation without large-scale forcing show that S-2 behaves like (Er)2/3. When forcing is applied, S-2 deviates from this behavior. However, increasing the Reynolds number tends to restore this behavior over an increasing range of scales. This is also observed in the predictions of the model for S-2.
机译:我们试图模拟大规模强迫对各向同性湍流中小鳞片统计行为的影响。更具体地,通过S-2的传输方程分析了大规模强迫在二阶速度结构功能,在超出耗散范围之外的区域中的效果,其中S-2的传输方程,其中S-3闭合模型,介绍了三阶速度结构功能。模型[L. Djenidi和Ra Antonia,工业和环境主题的流体湍流应用,Marseille,2019年7月9日至11日,Https://fab60.sciencesconf.org/]基于梯度型,具有涡流配方,具有以下表达式:S3 = -CS3 (S2)2E 部分导数S2部分导数R ,其中e 是湍流动能耗散的平均速率,R是空间增量,CS3是恒定的。进一步利用闭合的S-2传输方程以导出S-2的模型,用于超出耗散范围的尺度。 S-2的模型采用S2 = CK(E RR) 23 ,具有E R = E 1-br / re lambda 1 / 2,其中ck是常数,重新兰达泰勒微观雷诺数,函数br占大尺度的效果。S-2方程的数值解和基于S-2模型的预测与稳定的直接数值模拟数据非常好。状态强制均匀和各向同性的湍流。没有大规模强制的S-2传输方程的解决方案表明S-2表现得像 E r )2 / 3。当迫使迫使时,s-2偏离此行为。但是,增加了雷诺数倾向于在越来越多的尺度范围内恢复这种行为。在S-2模型的预测中也观察到这一点。

著录项

  • 来源
    《Physics of fluids》 |2020年第5期|共7页
  • 作者

    Djenidi L.; Antonia R. A.;

  • 作者单位

    Univ Newcastle Discipline Mech Engn Sch Engn Newcastle NSW 2308 Australia;

    Univ Newcastle Discipline Mech Engn Sch Engn Newcastle NSW 2308 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号