首页> 外文期刊>Physics of fluids >Mechanism of pressure oscillation in Taylor-Couette-Poiseuille flow with abruptly contracting and expanding annular gap
【24h】

Mechanism of pressure oscillation in Taylor-Couette-Poiseuille flow with abruptly contracting and expanding annular gap

机译:泰勒 - 汤 - Poiseuille流量的压力振荡机制,突然收缩和扩大环形间隙

获取原文
获取原文并翻译 | 示例
       

摘要

This study numerically investigates the effects of an abruptly contracting and expanding annular gap on the propagation of Taylor vortices in Taylor-Couette-Poiseuille flow. The results show that the pressure drop between the inlet and the outlet exhibits oscillations with low frequency and large amplitude. The nondimensional amplitude of oscillating pressure increases linearly with an increase in the rotating Reynolds number, whereas the nondimensional oscillating frequency remains nearly invariant with varying rotating and axial Reynolds numbers. Owing to the alternate action of counter-rotating Taylor vortex pairs in front of the block, local flow resistance periodically increases and decreases, resulting in the pressure drop oscillation. By analyzing the drift velocity and wavelength of the propagating Taylor vortex pair, a prediction model for the oscillating frequency is developed. Its results show that the nondimensional frequency is proportional to the blockage ratio. With an increase in the latter, the oscillating amplitude nonmonotonically changes as a result of the tunneling phenomenon, whereby the anticlockwise rotating Taylor roller is punctured by axial flow. Based on the above mechanism of pressure oscillation, the structure of a vortex breaker is proposed that can effectively reduce the oscillation in pressure.
机译:本研究数值研究了突然收缩和扩大环形间隙对泰勒 - 汤 - 普塞尔流量的泰勒涡旋繁殖的影响。结果表明,入口和出口之间的压降表现出具有低频和大幅度的振荡。旋转雷诺数的增加,振荡压力的非尺寸幅度随着旋转雷诺数的增加而增加,而不变的旋转和轴向雷诺数仍然存在几乎不变。由于嵌段前面的反向旋转泰勒涡流对的替代作用,局部流动性周期性地增加并降低,导致压降振荡。通过分析传播泰勒涡流对的漂移速度和波长,开发了振荡频率的预测模型。其结果表明,非幂频率与堵塞比例成比例。随着后者的增加,由于隧道现象的结果,振荡幅度非单调变化,由此逆时针旋转泰勒辊通过轴向流刺穿。基于上述压力振荡机构,提出了涡流破碎器的结构,可以有效地降低压力的振荡。

著录项

  • 来源
    《Physics of fluids》 |2019年第7期|共14页
  • 作者单位

    State Key Lab Mech Syst &

    Vibrat Shanghai 200240 Peoples R China;

    State Key Lab Mech Syst &

    Vibrat Shanghai 200240 Peoples R China;

    State Key Lab Mech Syst &

    Vibrat Shanghai 200240 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号