...
首页> 外文期刊>Physics of fluids >Two phase flow simulation of scour beneath a vibrating pipeline during the tunnel erosion stage
【24h】

Two phase flow simulation of scour beneath a vibrating pipeline during the tunnel erosion stage

机译:隧道侵蚀阶段振动管道下缝的两个相流模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A new numerical model is developed to simulate and investigate scour beneath a vibrating pipe during the tunnel erosion stage. This study is motivated by the fact that existing numerical models are not able to properly simulate,scour under a vibrating pipeline, and the underlying physical mechanisms are not well understood due to the complex fluid-structure-sediment interaction. The present model incorporates the hybrid fictitious domain-immersed boundary method into a recently developed rheology-based two-phase model. The present model is validated against published experiment results of flow beneath a vibrating pipeline near a rigid boundary and scour beneath a fixed pipe. The flow velocity at the gap and the scour profile beneath the pipe are generally well produced by the model. Subsequently, the proposed model is applied to simulate scour under a vibrating pipe with different vibration amplitudes and frequencies: Among other things, it is found that maximum pipe acceleration has a dominant effect on the underlying physics that induce scour, irrespective of the combination of the vibration amplitude and frequency. An explanation for this finding is proposed based on various quantitative simulated results. Published under license by AIP Publishing
机译:开发了一种新的数值模型来模拟隧道侵蚀阶段振动管道下面的冲刷。这项研究是由事实的动机,现有的数字模型不能正确地模拟,冲刷振动管道下,和底层的物理机制还不是很清楚,由于复杂的流体结构沉积物的相互作用。本模型将杂交虚拟结构域 - 浸入的边界方法纳入最近开发的基于流变的两相模型。本模型与在固定管道下方的刚性边界和冲刷附近的振动管道下方的流动实验结果验证。间隙处的流速和管道下方的冲刷轮廓通常由模型产生很好的生产。随后,应用了所提出的模型来模拟具有不同振动幅度和频率的振动管下的冲刷:在其他方面,发现最大管道加速度对诱导冲刷的底层物理具有显着影响,而不管振动幅度和频率。基于各种定量模拟结果提出了对该发现的解释。通过AIP发布在许可证下发布

著录项

  • 来源
    《Physics of fluids》 |2019年第11期|共19页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号