...
首页> 外文期刊>Physics of fluids >Passive separation control of a NACA0012 airfoil via a flexible flap
【24h】

Passive separation control of a NACA0012 airfoil via a flexible flap

机译:通过柔性翼片的NaCA0012翼型的被动分离控制

获取原文
获取原文并翻译 | 示例
           

摘要

The incorporation of nature-inspired techniques to control or reduce boundary layer separation, to bring about performance enhancements on air/water vehicles, has been an active research area for many years. In this paper, a baseline NACA0012 airfoil is modified using a short flap on its upper surface at a Reynolds number of Re = 1000. The impact of the flap configuration-described by length, attachment position, deployment angle, and material properties, on the aerodynamic performance of the airfoil-quantified by mean and fluctuating forces, is investigated, and the flow field is analyzed. Inspired by the observation of pop-up feathers on a bird's wing, the flap is first set to be rigid for a range of location, size, and inclination angles. After the optimal location of a rigid flap has been established, the flap is then allowed to be flexible, its motion is coupled to the encircling flow field, and it is tested for a range of mass ratios and bending stiffness values. The fluid motion is obtained by solving the lattice Boltzmann equation, while the dynamics of the flexible flap are calculated using the finite element method and the coupling between the flow and flap handled by the immersed boundary method. For the flexible flap, two flapping patterns are observed and the mechanism of separation control via rigid/flexible flap is explained. Compared to the flapless NACA0012 airfoil case, in the case with a flap of optimal configuration, the mean lift coefficient is improved by 13.51%, the mean drag coefficient is decreased by 3.67%, the mean lift-drag ratio is improved by 17.84%, the maximum lift fluctuation is decreased by 40.90%, and the maximum drag fluctuation is decreased by 56.90%. Published under license by AIP Publishing.
机译:纳入自然启发技术来控制或减少边界层分离,以带来空气/水车上的性能增强,一直是多年的活跃研究区。在本文中,在Re = 1000的雷诺数在其上表面上使用短翼片来修改基线Naca0012翼型。襟翼配置由长度,附接位置,部署角和材料特性的影响研究了通过平均和波动力的翼型量化的空气动力学性能,分析了流场。灵感灵感来自观察鸟翼上的弹出羽毛,第一瓣首先设定为一系列位置,尺寸和倾斜角度的刚性。在建立了刚性翼片的最佳位置之后,然后将翼片允许柔韧,其运动耦合到环绕流场,并且它被测试到一系列质量比和弯曲刚度值。通过求解格子玻璃板方程来获得流体运动,而使用有限元方法和通过浸没边界法处理的流动和襟翼之间的耦合计算柔性翼片的动态。对于柔性翼片,观察两个拍打图案,并解释了通过刚性/柔性翼片的分离控制机制。与翼展Naca0012翼型外壳相比,在具有最佳配置的皮瓣的情况下,平均升力系数提高了13.51%,平均阻力系数降低了3.67%,平均升力比率提高17.84%,最大升力波动降低40.90%,最大拖动波动减少56.90%。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Physics of fluids》 |2019年第10期|共17页
  • 作者单位

    Northwestern Polytech Univ Sch Astronaut Shaanxi Aerosp Flight Vehicle Design Key Lab Xian Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Astronaut Shaanxi Aerosp Flight Vehicle Design Key Lab Xian Shaanxi Peoples R China;

    Univ Manchester Sch Mech Aerosp &

    Civil Engn Manchester Lancs England;

    Xi An Jiao Tong Univ Sch Aerosp State Key Lab Strength &

    Vibrat Mech Struct Xian Shaanxi Peoples R China;

    Univ Manchester Sch Mech Aerosp &

    Civil Engn Manchester Lancs England;

    Univ Manchester Sch Mech Aerosp &

    Civil Engn Manchester Lancs England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号