首页> 外文期刊>Physical Review, A >Ultrafast fault-tolerant long-distance quantum communication with static linear optics
【24h】

Ultrafast fault-tolerant long-distance quantum communication with static linear optics

机译:超快容错与静态线性光学的长距离量子通信

获取原文
获取原文并翻译 | 示例
           

摘要

We present an in-depth analysis regarding the error resistance and optimization of our all-optical Bell measurement and ultrafast long-distance quantum communication scheme proposed by Ewert, Bergmann, and van Loock [Phys. Rev. Lett. 117, 210501 (2016)]. In order to promote our previous proposal from loss to fault tolerance, we introduce a general and compact formalism that can also be applied to other related schemes {including non-all-optical ones such as that of Muralidharan et al. [Phys. Rev. Lett. 112, 250501 (2014)]}. With the help of this new representation we show that our communication protocol does not only counteract the inevitable photon loss during channel transmission, but is also able to resist common experimental errors such as Pauli-type errors (bit and phase flips) and detector inefficiencies (losses and dark counts). Furthermore, we demonstrate that on the physical level of photonic qubits the choice of the standard linear optical Bell measurement with its limited efficiency is optimal for our setting in the sense that, apart from their potential use in state preparation, more advanced Bell measurements yield only a small decrease in resource consumption.We devise two state generation schemes that provide the required ancillary encoded Bell states (quasi-)on-demand at every station. The schemes are either based on nonlinear optics or on linear optics with multiplexing and exhibit resource costs that scale linearly or less than quadratic with the number of photons per encoded qubit, respectively. Finally, we show that it is possible to operate our communication scheme with on-off detectors instead of employing photon-number-resolving detectors.
机译:我们对eWERT,Bergmann和Van Loock提出的所有光学钟测量和超快长距离量子通信方案进行了深入的分析。 rev. lett。 117,210501(2016)]。为了促进我们以前的建议,从损失到容错,我们介绍了一般和紧凑的形式主义,也可以应用于其他相关方案(包括非全光学的方案,例如Muralidharan等人。 [物理。 rev. lett。 112,250501(2014)]}。与这个新的表示的帮助下,我们表明,我们的通信协议不仅抵消信道传输过程中不可避免的光子损失,但也能抵抗普通实验误差如泡利类型的错误(位和相位翻转)和检测器的低效率(损失和黑暗计数)。此外,我们证明,在光子Qubits的物理水平上,标准线性光学钟测量的选择具有有限的效率是我们的设置,因为它们的潜在使用在状态准备中,仅限更先进的钟测量产量资源消耗的少量减少。我们设计了两个国家一代方案,提供了在每个站的所需辅助编码的贝尔状态(准)。这些方案被或者基于非线性光学或线性光学用线性或小于二次,分别复用和显示出资源成本水垢每编码量子位的光子的数量。最后,我们表明可以使用开关检测器来操作我们的通信方案,而不是采用光子号码解析器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号