首页> 外文期刊>Physical Review, A >Understanding the nature of mean-field semiclassical light-matter dynamics: An investigation of energy transfer, electron-electron correlations, external driving, and long-time detailed balance
【24h】

Understanding the nature of mean-field semiclassical light-matter dynamics: An investigation of energy transfer, electron-electron correlations, external driving, and long-time detailed balance

机译:了解平均微晶灯具动态的性质:对能量转移,电子相关,外部驾驶和长期详细平衡的调查

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Semiclassical electrodynamics (with quantum matter plus classical electrodynamics fields) is an appealing approach for studying light-matter interactions, especially for realistic molecular systems. However, there is no unique semiclassical scheme. On the one hand, intermolecular interactions can be described instantaneously by static two-body interactions connecting two different molecules, while a classical transverse E field acts as a spectator at short distance; we will call this Hamiltonian no. I. On the other hand, intermolecular interactions can also be described as effects that are mediated exclusively through a classical one-body E field without any quantum effects at all (assuming we ignore electronic exchange); we will call this Hamiltonian no. II. Moreover, one can also mix these two different Hamiltonians into a third, hybrid Hamiltonian, which preserves quantum electron-electron correlations for lower excitations but describes higher excitations in a mean-field way. To investigate which semiclassical scheme is most reliable for practical use, here we study the real-time dynamics of a minimalistic many-site model-a pair of identical two-level systems (TLSs)-undergoing either resonance energy transfer (RET) or collectively driven dynamics. While both approaches (no. 1 and no. 2) perform reasonably well when there is no strong external excitation, we find that no single approach is perfect for all conditions (and all methods fail when a strong external field is applied). Each method has its own distinct problems: Hamiltonian no. I performs best for RET but behaves in a complicated manner for driven dynamics; Hamiltonian no. II is always stable, but obviously fails for RET at short distances. One key finding is that, for externally driven dynamics, a full configuration-interaction description of Hamiltonian no. I strongly overestimates the long-time electronic energy, highlighting the not obvious fact that, if one plans to merge quantum molecules with clas
机译:半透明电动电动(用量子物质加上经典电动场)是一种吸引光物质相互作用的吸引力方法,尤其是用于现实分子系统。但是,没有独特的半导体方案。一方面,通过连接两个不同分子的静态双体相互作用可以瞬间描述分子间相互作用,而经典的横向E场在短距离处用作观众;我们会打电话给这个哈密顿人。 I.另一方面,分子间相互作用也可以被描述为仅通过经典一体E场专门介导的效果,而没有任何量子效应(假设我们忽略电子交换);我们会打电话给这个哈密顿人。 II。此外,还可以将这两个不同的Hamiltonians混合成第三,混合哈密尔顿人,其保留了较低激励的量子电子 - 电子相关性,但以平均场方式描述了更高的激励。为了调查哪种半导体方案对于实际使用最可靠,在这里,我们研究了一个简单的多个站点模型 - 一对相同的两级系统(TLSS) - 在谐振能量转移(RET)或集体的实时动态驱动动态。虽然这两种方法(第1和第2号)进行了相当良好的外部刺激,但我们发现没有单一方法是完美的,所有条件(并且当应用强外部场时所有方法都失败)。每种方法都有自己独特的问题:哈密顿没有。我最适合RET,但以一种转向动态的方式表现为复杂的方式;汉密尔顿人没有。 II总是稳定的,但在短距离下明显失败。一个关键发现是,对于外部驱动的动态,汉密尔顿NO的完整配置互动描述。我强烈高估了长期电子能源,突出了不明显的事实,如果一个人与clas合并量子分子

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号