...
首页> 外文期刊>Physical Review, A >Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field
【24h】

Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

机译:磁场中超高范围rydberg分子的旋转相互作用效应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a ~(87)Rb Rydberg atom the outer electron of which interacts via spindependent s- and p-wave scattering with a polarizable ~(87)Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d-Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.
机译:我们研究了暴露于均匀磁场的超声范围rydberg分子的精细和旋转结构。每个分子由〜(87)Rb rydberg原子组成,外电子通过具有可极化的〜(87)Rb地 - 状态原子的SpIndependent S-和P波散射相互作用。我们的模型还包括地面原子的高血清结构以及Rydberg和地面原子的旋转轨道耦合。我们专注于40岁的D-Rydberg状态和主要量子数N.电子结构和振动状态在出生的oppenheimer近似值的框架中确定,用于不同的场强度范围从几百万高斯的范围范围。结果表明,散射相互作用与自旋耦合之间的相互作用在不同的自旋配置中产生了大量的分子状态以及可以由磁场调谐的不同空间布置。这包括相对规则形状的能量表面,其中塞曼分裂与散射相互作用相比大而且与rydberg精细结构相比,以及较弱和更强的领域的更复杂的结构。通过将扩展理论与自旋独立模型进行比较来量化自旋耦合的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号