首页> 外文期刊>Physical chemistry chemical physics: PCCP >Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics
【24h】

Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics

机译:来自组合Reaxff和量子力学反应性动力学的提出的能量材料(MTO和MTO3N)的Chapman-Jouguet状态的预测爆轰性能

获取原文
获取原文并翻译 | 示例
           

摘要

The development of new energetic materials (EMs) with improved detonation performance but low sensitivity and environmental impact is of considerable importance for applications in civilian and military fields. Often new designs are difficult to synthesize so predictions of performance in advance is most valuable. Examples include MTO (2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide) and MTO3N (2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide) suggested by Klapotke as candidate EMs but not yet successfully synthesized. We propose and apply to these materials a new approach, RxMD(cQM), in which ReaxFF Reactive Molecular Dynamics (RxMD) is first used to predict the reaction products and thermochemical properties at the Chapman Jouguet (CJ) state for which the system is fully reacted and at chemical equilibrium. Quantum mechanics dynamics (QMD) is then applied to refine the pressure of the ReaxFF predicted CJ state to predict a more accurate final CJ point, leading to a very practical calculation that includes accurate long range vdW interactions needed for accurate pressure. For MTO, this RxMD(cQM) method predicts a detonation pressure of P-CJ = 40.5 GPa and a detonation velocity of D-CJ = 8.8 km s(-1), while for MTO3N it predicts P-CJ = 39.9 GPa and D-CJ = 8.4 km s(-1), making them comparable to HMX (P-CJ = 39.5 GPa, D-CJ = 9.1 km s(-1)) and worth synthesizing. This first-principles-based RxMD(cQM) methodology provides an excellent compromise between computational cost and accuracy including the formation of clusters that burn too slowly, providing a practical mean of assessing detonation performances for novel candidate EMs. This RxMD(cQM) method that links first principles atomistic molecular dynamics simulations with macroscopic properties to promote in silico design of new EMs should also be of general applicability to materials synthesis and processing.
机译:新的充满活力材料(EMS)的开发具有改善的爆轰性能,但低灵敏度和环境影响对于民用和军事领域的应用具有重要意义。通常,新的设计难以合成,因此提前的性能预测是最有价值的。实例包括MTO(2,4,6-三氨基-1,3,5-三嗪-1,3,5-三氧化物)和MTO3N(2,4,6-三腈-1,3,5-三嗪-1,3 Klapotke为候选EMS的鉴定,5-三氧化物),但尚未成功地合成。我们提出并适用于这些材料,一种新的方法,RXMD(CQM),其中Reaxff反应性分子动力学(RXMD)首先用于预测该系统完全的Chapman Jouguet(CJ)状态的反应产物和热化学性质反应和化学均衡。然后应用量子力学动力学(QMD)以优化Reaxff预测的CJ状态的压力来预测更准确的最终CJ点,导致非常实际的计算,包括准确压力所需的精确长距离VDW相互作用。对于MTO,该RXMD(CQM)方法预测P-CJ = 40.5GPa的爆轰压力和D-CJ = 8.8mm S(-1)的爆轰速度,而对于MTO3N,它预测P-CJ = 39.9 GPA和D. -cj = 8.4km s(-1),使其与HMX相当(P-CJ = 39.5 GPA,D-CJ = 9.1mm S(-1)),值得合成。基于第一原理的RXMD(CQM)方法在计算成本和准确性之间提供了出色的折衷,包括形成烧坏太慢的簇,提供了评估新颖候选EMS的爆炸性能的实际平均值。该RXMD(CQM)方法将第一原理与宏观性质的原始分子动力学模拟联系在新EMS的硅设计中促进宏观性质,也应该具有一般适用于材料合成和加工。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号