...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites
【24h】

Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites

机译:探讨硅酸钙 - 水合物/聚合物纳米复合材料的界面强化机制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The mechanical properties of organic/inorganic composites can be highly dependent on the interfacial interactions. In this work, with organic polymers intercalated into the interlayer of inorganic calcium silicate hydrate (C-S-H), the primary binding phase of Portland cement, great ductility improvement is obtained for the nanocomposites. Employing reactive molecular dynamics, the simulation results indicate that strong interfacial interactions between the polymers and the substrate contribute greatly to strengthening the materials, when C-S-H/poly ethylene glycol (PEG), C-S-H/poly acrylic acid (PAA), and C-S-H/poly vinyl alcohol (PVA) were subject to uniaxial tension along different lattice directions. In the x and z direction tensile processes, the Si-OCa bonds of the C-S-H gel, which were elongated and broken to form Si-OH and Ca-OH, play a critical role in loading resistance, while the incorporation of polymers bridged the neighboring silicate sheets, and activated more the hydrolytic reactions at the interfaces to avoid strain localization, thus increasing the tensile strength and postponing the fracture. On the other hand, Si-O-Si bonds of C-S-H mainly take the load when tension was applied along the y direction. During the post-yield stage, rearrangements of silicate tetrahedra occurred to prevent rapid damage. The polymer intercalation further elongates this post-yield period by forming interfacial Si-O-C bonds, which promote rearrangements and improve the connectivity of the defective silicate morphology, significantly improving the ductility. Among the polymers, PEG exhibits the strongest interaction with C-S-H, and thus C-S-H/PEG possesses the highest ductility. We expect that the molecular-scale mechanisms interpreted here will shed new light on the stress-activated chemical interactions at the organic/inorganic interfaces, and help eliminate the brittleness of cement-based materials on a genetic level.
机译:有机/无机复合材料的机械性能可以高度依赖于界面相互作用。在这项工作中,通过插入到无机硅酸钙水合物(C-S-H)中间层中的有机聚合物,对于纳米复合材料,获得了波特兰水泥的主要结合阶段,为纳米复合材料获得了很大的延展性改善。采用反应性分子动力学,模拟结果表明,当CSH /聚乙二醇(PEG),CSH /聚丙烯酸(PAA)和CSH / POTY乙烯基(PA)和CSH / POY乙烯基)醇(PVA)沿着不同的晶格方向受到单轴的张力。在X和Z方向拉伸过程中,CSH凝胶的Si-OCA键,伸长并破碎以形成Si-OH和Ca-OH,在负载抗性中起着关键作用,而聚合物的掺入桥接邻近硅酸盐片,并在界面处活化更多的水解反应,以避免应变定位,从而增加拉伸强度并推迟裂缝。另一方面,C-S-H的Si-O-Si键主要在沿Y方向施加张力时接管负荷。在产率后阶段,发生硅酸盐四面体的重排,以防止损坏。聚合物嵌入通过形成界面Si-O-C键进一步伸长了该产率的时间,这促进了重排,提高了缺陷硅酸盐形态的连通性,显着提高了延展性。在聚合物中,PEG表现出与C-S-H最强的相互作用,因此C-S-H / PEG具有最高的延展性。我们预计这里解释的分子级机制将在有机/无机界面的应力激活的化学相互作用上揭示新的光,并有助于消除基于水泥基材料的脆性。

著录项

  • 来源
  • 作者单位

    Southeast Univ Sch Mat Sci &

    Engn Jiangsu Key Lab Construct Mat Nanjing 211189 Jiangsu Peoples R China;

    Qingdao Univ Technol Dept Civil Engn Qingdao 266033 Peoples R China;

    Univ Calif Berkeley Dept Civil &

    Environm Engn Berkeley CA 94720 USA;

    Southeast Univ Sch Mat Sci &

    Engn Jiangsu Key Lab Construct Mat Nanjing 211189 Jiangsu Peoples R China;

    Qingdao Univ Technol Dept Civil Engn Qingdao 266033 Peoples R China;

    Southeast Univ Sch Mat Sci &

    Engn Jiangsu Key Lab Construct Mat Nanjing 211189 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号