...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Trimeric coiled coils expand the range of strength, toughness and dynamics of coiled coil motifs under shear
【24h】

Trimeric coiled coils expand the range of strength, toughness and dynamics of coiled coil motifs under shear

机译:三聚体盘绕线圈扩展了剪切下盘绕线圈图案的强度,韧性和动力范围

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Coiled coils are widespread protein motifs in nature, and promising building blocks for bio-inspired nanomaterials and nanoscale force sensors. Detailed structural insight into their mechanical response is required to understand their role in tissues and to design building blocks for applications. We use all-atom molecular dynamics simulations to elucidate the mechanical response of two types of coiled coils under shear: dimers and trimers. The amino acid sequences of both systems are similar, thus enabling universal (vs. system-specific) features to be identified. The trimer is mechanically more stable - it is both stronger and tougher - than the dimer, withstanding higher forces (127 pN vs. 49 pN at v = 10(-3) nm ns(-1)) and dissipating up to five times more energy before rupture. The deformation mechanism of the trimer at all pull speeds is dominated by progressive helix unfolding. In contrast, at the lowest pull speeds, dimers deform by unfolding/refolding-assisted sliding. The additional helix in the trimer thus both determines the stability of the structure and affects the deformation mechanism, preventing helix sliding. The mechanical response of the coiled coils is not only sensitive to the oligomerization state but also to helix stability: preventing helix unfolding doubles the mechanical strength of the trimer, but decreases its toughness to half. Our results show that coiled coil trimers expand the range of coiled coil responses to an applied shear force. Altering the stability of individual helices against deformation emerges as one possible route towards fine-tuning this response, enabling the use of these motifs as nanomechanical building blocks.
机译:线圈是本质上的广泛蛋白质基序,并且具有生物启发纳米材料和纳米级力传感器的承诺构建块。需要详细的结构洞察力,以了解他们在组织中的作用以及设计应用程序的构建块。我们使用全原子分子动力学模拟来阐明两种类型的剪切下的卷材线圈的机械响应:二聚体和三聚体。两种系统的氨基酸序列是相似的,因此可以识别通用(与系统特定的)特征。三聚体是机械更稳定的 - 它比二聚体更强,更难度,耐高力(在v = 10(-3)nm nm(-1))上的较高力(127 pn vs.49 pn),并且散热至多破裂前的能量。所有拉速的三聚片的变形机制由渐进式螺旋展开主导。相比之下,在最低拉速下,二聚体通过展开/重折叠辅助滑动而变形。因此,修剪器中的附加螺旋都决定了结构的稳定性并影响变形机构,防止螺旋滑动。卷绕线圈的机械响应不仅对寡聚化状态敏感,而且对螺旋稳定性敏感:防止螺旋展开倍增三聚体的机械强度,但将其韧性降至一半。我们的结果表明,卷绕线圈三角形展开了施加剪切力的盘绕线圈响应范围。改变单个螺旋对变形的稳定性出现为微调此响应的一个可能的路线,使得这些图案能够作为纳米力学构建块使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号