首页> 外文期刊>Physical chemistry chemical physics: PCCP >Realizing high thermoelectric performance with comparable p- and n-type figure-of-merits in a graphene/h-BN superlattice monolayer
【24h】

Realizing high thermoelectric performance with comparable p- and n-type figure-of-merits in a graphene/h-BN superlattice monolayer

机译:用Graphene / H-BN超晶格单层中的可比P-和N型艺术性实现高热电性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Carbon-based structures are a superior alternative for unleashing the thermoelectric potential of earth-abundant and environmentally friendly materials. Here we design a hybrid graphene/h-BN superlattice monolayer and investigate its thermoelectric properties based on density functional theory and accurate solution of Boltzmann transport equations. Compared with that of pristine graphene, the lattice thermal conductivity of the superlattice structure is more than two orders of magnitude lower ascribed to the significantly increased phonon scattering originating from the mixed-bond characteristics. Besides, the obvious valley anisotropy near the electronic band edge leads to an ultrahigh power factor along the zigzag direction, which in turn gives an n-type ZT value as high as 2.5 at 1100 K. Moreover, it is interesting to find that the thermoelectric performance of p-type system can be enhanced to be comparable with that of n-type one by appropriate substitution of the nitrogen atom with phosphorus, which can suppress the lattice thermal conductivity but nearly have no effect on the hole transport.
机译:基于碳的结构是偏离土坯和环保材料的热电电位的优越替代方案。在这里,我们设计了一种混合石墨烯/ H-BN超晶格单层,并基于密度泛函理论和Boltzmann运输方程的准确解决方案来研究其热电性能。与原始石墨烯相比,超晶格结构的晶格导热率大于归因于源自混合粘合特性的显着增加的声子散射的两个数量级。此外,电子频带边缘附近的明显谷位各向异性导致沿Z字形方向的超高功率因数,这又使N型ZT值高达2.5,在1100 k下。此外,有趣的是找到热电通过用磷氮原子的适当取代,可以提高p型系统的性能与N型氮原子的磷原子相当,这可以抑制晶格导热率,但几乎对空穴传输几乎没有影响。

著录项

  • 来源
  • 作者单位

    Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology Wuhan University Wuhan 430072 China.;

    Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology Wuhan University Wuhan 430072 China.;

    Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology Wuhan University Wuhan 430072 China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号