首页> 外文期刊>Physical chemistry chemical physics: PCCP >Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study
【24h】

Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study

机译:分子动力学研究中碳纳米内狭窄的离子液体的高度驱动结构和热力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the structural transition of ionic liquids (ILs) confined in a nanospace is imperative for the application of ILs in energy storage, gas separation, and other chemical engineering techniques. In this work, the quantitative relations between the properties and height of the nanochannel (H) for the ([Emim](+)[TF2N](-)) IL are explored through molecular dynamics simulations. Interestingly, the entropy of the confined IL exhibits a nonmonotonic behavior as H increases: initially increasing for H < 1.0 nm and then decreasing for 1.0 < H < 1.1 nm, followed by increasing again for H > 1.1 nm; it finally approaches that of liquid bulk ILs. The vibrational spectrum of the confined IL is analyzed to investigate the nature of nonmonotonic entropy, showing that the liquidity and partial solidity will be respectively attenuated and enhanced as H decreases from 5.0 to 0.75 nm. Moreover, the hydrogen bond (HB) network and external force are also calculated, showing similar nonmonotonic behaviors when compared with the thermodynamic properties. The entropy gain of the confined IL originates from the reduced HB interactions, weaker external force, and partial solid nature, where more phase space sampling for ILs inside a bilayer graphene nanochannel (BLGC) can be achieved. All the above relations demonstrate that there exists a critical height of the nanochannel (H-CR = 1.0 nm) at which the confined IL possesses weaker HB interaction, higher entropy, and better stability. The critical height of the nanochannel is also identified in the analysis of the local structures of cation head groups and anions, indicating that the confined IL could have a faster in-plane diffusive ability. These factors can serve as key indicators in quantitatively characterizing the mechanism for the structural transition of ILs inside a nanochannel and facilitate the rational design of nanopores and nanochannels to regulate the properties and structures of ILs in practical application scenarios.
机译:理解在一个密闭NANOSPACE离子液体(离子液体)的结构转变是当务之急在能量存储,气体分离,和其它化学工程技术离子液体的应用。在这项工作中,对于特性和纳米通道(H)的高度之间的定量关系([EMIM](+)[TF 2 N]( - ))IL通过分子动力学模拟的探讨。有趣的是,密闭IL的熵显示出非单调行为以H的增加:初期增强用于h <1.0 nm和然后减小为1.0 1.1纳米再次增加;它最终接近于液体散装离子液体。密闭IL的振动光谱被分析以调查非单调熵的性质,显示出流动性和密实部分将分别被衰减和增强以H降低为5.0至0.75纳米。此外,氢键(HB)的网络和外力还计算,示出了当与所述热力学性质类似相比非单调行为。密闭IL起源的熵增益从减少HB相互作用,较弱的外力,并部分固性质,其中可以实现用于双层石墨烯纳米通道(BLGC)内离子液体更相位空间采样。所有上述关系表明,存在在该密闭IL具有弱相互作用HB,更高的熵,以及更好的稳定性的纳米通道(H-CR = 1.0纳米)的临界高度。纳米通道的临界高度也在阳离子头组和阴离子的局部结构的分析鉴定,表明限制IL可以有更快的平面内扩散的能力。这些因素可以作为关键指标,定量地表征为离子液体的纳米通道内的结构转变的机理并促进纳米孔和纳米通道,以调节在实际的应用场景的属性和离子液体的结构的合理设计。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Beijing Key Lab Ion Liquids Clean Proc CAS Key Lab Green Proc &

    Engn State Key Lab Multiphase Complex Syst Inst Proc E Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Key Lab Ion Liquids Clean Proc CAS Key Lab Green Proc &

    Engn State Key Lab Multiphase Complex Syst Inst Proc E Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Key Lab Ion Liquids Clean Proc CAS Key Lab Green Proc &

    Engn State Key Lab Multiphase Complex Syst Inst Proc E Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Key Lab Ion Liquids Clean Proc CAS Key Lab Green Proc &

    Engn State Key Lab Multiphase Complex Syst Inst Proc E Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Key Lab Ion Liquids Clean Proc CAS Key Lab Green Proc &

    Engn State Key Lab Multiphase Complex Syst Inst Proc E Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Key Lab Ion Liquids Clean Proc CAS Key Lab Green Proc &

    Engn State Key Lab Multiphase Complex Syst Inst Proc E Beijing 100190 Peoples R China;

    Jiangnan Univ Jiangsu Key Lab Adv Food Mfg Equipment &

    Technol Wuxi 214122 Jiangsu Peoples R China;

    Chinese Acad Sci Beijing Key Lab Ion Liquids Clean Proc CAS Key Lab Green Proc &

    Engn State Key Lab Multiphase Complex Syst Inst Proc E Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号