...
首页> 外文期刊>Physics in medicine and biology. >Fast optimized Monte Carlo phase-space generation and dose prediction for low energy x-ray intra-operative radiation therapy
【24h】

Fast optimized Monte Carlo phase-space generation and dose prediction for low energy x-ray intra-operative radiation therapy

机译:快速优化的蒙特卡罗相空间产生和低能量X射线内部术中放射治疗的剂量预测

获取原文
获取原文并翻译 | 示例

摘要

Low energy x-ray intra-operative radiation therapy (IORT) is used mostly for breast cancer treatment with spherical applicators. X-ray IORT treatment delivered during surgery (ex: INTRABEAM (R), Carl Zeiss) can benefit from accurate and fast dose prediction in a patient 3D volume. However, full Monte Carlo (MC) simulations are time-consuming and no commercial treatment planning system (TPS) was available for this treatment delivery technique. Therefore, the aim of this work is to develop a dose computation tool based on MC phase space information, which computes fast and accurate dose distributions for spherical and needle INTRABEAM (R) applicators. First, a database of monoenergetic phase-space (PHSP) files and depth dose profiles (DDPs) in water for each applicator is generated at factory and stored for on-site use. During commissioning of a given INTRABEAM (R) unit, the proposed fast and optimized phase-space (FOPS) generation process creates a phase-space at the exit of the applicator considered, by fitting the energy spectrum of the source to a combination of the monoenergetic precomputed phase-spaces, by means of a genetic algorithm, with simple experimental data of DDPs in water provided by the user. An in-house hybrid MC (HMC) algorithm which takes into account condensed history simulations of photoelectric, Rayleigh and Compton interactions for x-rays up to 1 MeV computes the dose from the optimized phase-space file. The whole process has been validated against radiochromic films in water as well as reference MC simulations performed with pen Easy in heterogeneous phantoms. From the pre-computed monoenergetic PHSP files and DDPs, building the PHSP file optimized to a particular depth-dose curve in water only takes a few minutes in a single core (i7@2.5 GHz), for all the applicators considered in this work, and this needs to be done only when the x-ray source (XRS) is replaced. Once the phase-space file is ready, the HMC code is able to compute dose distributions within 10 min. For all the applicators, more than 95% of voxels from dose distributions computed with the FOPS+hybrid code agreed within 7%-0.5 mm with both reference MC simulations and measurements. The method proposed has been fully validated and it is now implemented into radiance (GMV SA, Spain), the first commercial IORT TPS.
机译:低能量X射线术中术中放射治疗(IORT)主要用于用球形涂抹器进行乳腺癌处理。在手术期间提供的X射线IORT治疗(例如:Interabeam(R),Carl Zeiss)可以从患者3D体积中受益于准确和快速的剂量预测。然而,完整的蒙特卡罗(MC)模拟是耗时的,并且没有商业处理计划系统(TPS)可用于该处理递送技术。因此,这项工作的目的是基于MC相空间信息开发一种剂量计算工具,其计算用于球形和针内部(R)涂敷器的快速准确的剂量分布。首先,在工厂生成每个涂抹器的单体相位空间(PHSP)文件和深度剂量曲线(DDPS)的数据库,并在工厂生成并储存用于现场使用。在给定的IntraBeam(R)单位的调试期间,通过将源的能谱拟合到所考虑的施用者的出口处,所提出的快速和优化的相位空间(FOPS)生成过程在涂抹器的出口处创造了一个相位空间通过遗传算法,单体预定算法,通过遗传算法,具有用户提供的水中DDP的简单实验数据。内部混合MC(HMC)算法考虑了X射线的光电,瑞利和康普顿相互作用的浓缩历史模拟,高达1 MeV计算了优化的相空间文件的剂量。整个过程已被验证在水中的放射性致铬膜以及用笔容易在异质模拟中进行的参考MC模拟。从预先计算的单齿性PHSP文件和DDPS,将PHSP文件构建到水中的特定深度剂量曲线中只需要几分钟的单一核心(I7@2.5 GHz),适用于本工作中考虑的所有涂抹器,并且只有在更换X射线源(XRS)时才需要完成。一旦相位空间文件准备就绪,HMC代码就能够在10分钟内计算剂量分布。对于所有施用器,使用FOPS +混合码的剂量分布超过95%的体素,同意,参考MC模拟和测量值在7%-0.5mm内。提出的方法已完全验证,现在将其实施到Radiance(GMV SA,Spain),这是第一个商业IORT TPS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号