...
首页> 外文期刊>Physics in medicine and biology. >The impact of dual-and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study
【24h】

The impact of dual-and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study

机译:双和多能量CT对质子铅笔梁范围不确定性的影响:蒙特卡罗研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The purpose of this work is to evaluate the impact of single-, dual- and multi-energy CT (SECT, DECT and MECT) on proton range uncertainties in a patient like geometry and a full Monte Carlo environment. A virtual patient is generated from a real patient pelvis CT scan, where known mass densities and elemental compositions are overwritten in each voxel. Simulated CT images for SECT, DECT and MECT are generated for two limiting cases: (1) theoretical and idealistic CT numbers only affected by Gaussian noise (case A, the best scenario) and (2) reconstructed polyenergetic sinograms containing beam hardening, projection-based Poisson noise, and reconstruction artifacts (case B, the worst scenario). Conversion of the simulated SECT images into Monte Carlo inputs is done following the stoichiometric calibration method. For DECT and MECT, the Bayesian eigentissue decomposition method of Lalonde (2017 Med. Phys. 44 5293-302) is used. Pencil beams from seven different angles around the virtual patient are simulated using TOPAS to assess the performance of each method. Percentage depth doses curves (PDD) are compared to ground truth in order to determine the accuracy of range prediction of each imaging modality. For the idealistic images of case A, MECT and DECT slightly outperforms SECT. Root mean square (RMS) errors or 0.78 mm, 0.49 mm and 0.42 mm on R-80 mm, are observed for SECT, DECT and MECT respectively. In case B, PDD calculated in the MECT derived Monte Carlo inputs generally shows the best agreement with ground truth in both shape and position, with RMS errors of 2.03 mm, 1.38 mm and 0.86 mm for SECT, DECT and MECT respectively. Overall, the Bayesian eigentissue decomposition used with DECT systematically predicts proton ranges more accurately than the gold standard SECT-based approach. When CT numbers are severely affected by imaging artifacts, MECT with four energy bins becomes more reliable than both DECT and SECT.
机译:这项工作的目的是评估单,双能和多能量CT(SECT,DECT和MECT)对患者的质子范围不确定性的影响,如几何形状和全蒙特卡罗环境。从真正的患者骨盆CT扫描产生虚拟患者,其中已知的质量密度和元素组合物在每个体素中被覆盖。模拟用于SECT,DECT和MECT的CT图像,为两个限制性情况生成:(1)仅受高斯噪声(案例A,最佳场景)和(2)重建的多素终端中文函数影响的理论和理想性CT编号,其中包含光束硬化,投影 - 基于泊松噪声,以及重建伪影(CASE B,最糟糕的情况)。在化学计量校准方法之后,将模拟的SECT图像转换为蒙特卡罗输入。对于DECT和MECT,Lalonde(2017MED.MECT.MOME.44 5293-302)的贝叶斯本义分解方法。使用TOPAS模拟虚拟患者周围七种不同角度的铅笔束来评估每种方法的性能。将深度百分点曲线(PDD)与地面真理进行比较,以确定每个成像模型的范围预测的准确性。对于案例A,MEG和DECT略微优异的理想形象。对于SECT,DECT和MECT,分别观察到R-80 mm的螺根均方(RMS)误差或0.78mm,0.49mm和0.42mm。在B的情况下,在Mect衍生的蒙特卡洛输入中计算的PDD通常显示出与形状和位置的地面真理的最佳协议,分别具有2.03毫米,1.38毫米和0.86mm的RMS误差,分别为DECT和MECT。总的来说,与DECT一起使用的贝叶斯本义分解系统地预测质子的范围比基于金标准的基于金标准的方法更准确。当CT编号受到成像伪影的严重影响时,具有四个能量箱的MEC比DECT和SECT更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号