...
首页> 外文期刊>Physics in medicine and biology. >The impact of dual-and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study
【24h】

The impact of dual-and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study

机译:双和多能量CT对质子铅笔梁范围不确定性的影响:蒙特卡罗研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The purpose of this work is to evaluate the impact of single-, dual- and multi-energy CT (SECT, DECT and MECT) on proton range uncertainties in a patient like geometry and a full Monte Carlo environment. A virtual patient is generated from a real patient pelvis CT scan, where known mass densities and elemental compositions are overwritten in each voxel. Simulated CT images for SECT, DECT and MECT are generated for two limiting cases: (1) theoretical and idealistic CT numbers only affected by Gaussian noise (case A, the best scenario) and (2) reconstructed polyenergetic sinograms containing beam hardening, projection-based Poisson noise, and reconstruction artifacts (case B, the worst scenario). Conversion of the simulated SECT images into Monte Carlo inputs is done following the stoichiometric calibration method. For DECT and MECT, the Bayesian eigentissue decomposition method of Lalonde (2017 Med. Phys. 44 5293-302) is used. Pencil beams from seven different angles around the virtual patient are simulated using TOPAS to assess the performance of each method. Percentage depth doses curves (PDD) are compared to ground truth in order to determine the accuracy of range prediction of each imaging modality. For the idealistic images of case A, MECT and DECT slightly outperforms SECT. Root mean square (RMS) errors or 0.78 mm, 0.49 mm and 0.42 mm on R-80 mm, are observed for SECT, DECT and MECT respectively. In case B, PDD calculated in the MECT derived Monte Carlo inputs generally shows the best agreement with ground truth in both shape and position, with RMS errors of 2.03 mm, 1.38 mm and 0.86 mm for SECT, DECT and MECT respectively. Overall, the Bayesian eigentissue decomposition used with DECT systematically predicts proton ranges more accurately than the gold standard SECT-based approach. When CT numbers are severely affected by imaging artifacts, MECT with four energy bins becomes more reliable than both DECT and SECT.
机译:这项工作的目的是评估单核,双核和多能量CT(派,DECT和MECT)的质子范围的不确定性状的几何形状和一个完整的蒙特卡洛环境病人的影响。来自真实的患者产生的虚拟患者骨盆CT扫描,其中已知的质量密度和元素的组合物中的每个体素被覆盖。对于两种极限情况中产生模拟的CT图像SECT,DECT和MECT:(1)理论和理想化CT数只受高斯噪声(情况A中,最好的情况),(2)重建含束硬化多能窦腔X线照相,projection-基于泊松噪声,和重建伪影(情形B,最坏的情况下)。模拟的SECT图像转换成蒙特卡洛输入的转换以下的化学计量的标定方法来完成。对于DECT和MECT,拉隆德的贝叶斯eigentissue分解法(2017年医学。物理学44 5293-302)被使用。铅笔从周围的虚拟患者七个不同角度的光束使用TOPAS模拟,评估每个方法的性能。百分深度剂量曲线(PDD)进行比较,以地面实况,以便确定每一个成像模态的范围预测的准确性。对于情况A的理想化的图像,MECT和DECT略优于第二节。分别观察SECT,DECT和MECT均方根(RMS)误差或0.78毫米,0.49毫米,在R-80毫米0.42毫米。在情况B中,计算出的PDD在MECT衍生蒙特卡洛输入通常示出了具有基础事实在两个形状和位置的最佳协议,具有2.03毫米,1.38毫米和0.86毫米分别SECT,DECT和MECT RMS误差。总体而言,与DECT使用贝叶斯eigentissue分解系统预测质子范围比金标准的基于SECT的方法更准确地。当CT数造成严重的影响成像伪影,MECT具有四个能量箱变得比两DECT和SECT更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号