首页> 外文期刊>Physics in medicine and biology. >Layered mass geometry: A novel technique to overlay seeds and applicators onto patient geometry in Geant4 brachytherapy simulations
【24h】

Layered mass geometry: A novel technique to overlay seeds and applicators onto patient geometry in Geant4 brachytherapy simulations

机译:分层质量几何形状:一种覆盖种子和涂抹器的新技术在Geant4近距离放射治疗模拟中患者几何体

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A problem faced by all Monte Carlo (MC) particle transport codes is how to handle overlapping geometries. The Geant4 MC toolkit allows the user to create parallel geometries within a single application. In Geant4 the standard mass-containing geometry is defined in a simulation volume called the World Volume. Separate parallel geometries can be defined in parallel worlds, that is, alternate three dimensional simulation volumes that share the same coordinate system with the World Volume for geometrical event biasing, scoring of radiation interactions, and/or the creation of hits in detailed readout structures. Until recently, only one of those worlds could contain mass so these parallel worlds provided no solution to simplify a complex geometric overlay issue in brachytherapy, namely the overlap of radiation sources and applicators with a CT based patient geometry. The standard method to handle seed and applicator overlay in MC requires removing CT voxels whose boundaries would intersect sources, placing the sources into the resulting void and then backfilling the remaining space of the void with a relevant material. The backfilling process may degrade the accuracy of patient representation, and the geometrical complexity of the technique precludes using fast and memory-efficient coding techniques that have been developed for regular voxel geometries. The patient must be represented by the less memory and CPU-efficient Geant4 voxel placement technique, G4PVPlacement, rather than the more efficient G4NestedParameterization (G4NestedParam). We introduce for the first time a Geant4 feature developed to solve this issue: Layered Mass Geometry (LMG) whereby both the standard (CT based patient geometry) and the parallel world (seeds and applicators) may now have mass. For any area where mass is present in the parallel world, the parallel mass is used. Elsewhere, the mass of the standard world is used. With LMG the user no longer needs to remove patient CT voxels that would include for example seeds. The patient representation can be a regular voxel grid, conducive to G4NestedParam, and the patient CT derived materials remain exact, avoiding the inaccuracy of the backfilling technique. Post-implant dosimetry for one patient with 125I permanent seed implant was performed using Geant4 version 9.5.p01 using three different geometrical techniques. The first technique was the standard described above (G4PVPlacement). The second technique placed patient voxels as before, but placed seeds with LMG (G4PVPlacement+LMG). The third technique placed patient voxels through G4NestedParam and seeds through LMG (G4NestedParam+LMG). All the scenarios were calculated with 3 different image compression factors to manipulate the number of voxels. Additionally, the dosimetric impact of the backfilling technique was investigated for the case of calcifications in close proximity of sources. LMG eliminated the need for backfilling and simplified geometry description. Of the two LMG techniques, G4PVPlacement+LMG had no benefit to calculation time or memory use, actually increasing calculation time, but G4NestedParam+LMG reduced both calculation time and memory. The benefits of G4NestedParam+LMG over standard G4PVPlacement increased with increasing voxel numbers. For the case of calcifications in close proximity to sources, LMG not only increased efficiency but also yielded more accurate dose calculation than G4PVPlacement. G4NestedParam in combination with LMG present a new, efficient approach to simulate radiation sources that overlap patient geometry. Cases with brachytherapy applicators would constitute a direct extension of the method.
机译:面临的所有蒙特卡洛(MC)颗粒输送码的一个问题是如何处理重叠的几何形状。所述GEANT4 MC工具箱允许用户在单个应用程序中创建平行的几何形状。在GEANT4标准含大量几何形状在称为世界音量的模拟体积限定。分开的平行的几何形状可在平行的世界,也就是共享相同坐标系与世界分册几何事件偏置,辐射相互作用的得分,和/或在详细读出结构的创建命中替代三维仿真体积来限定。直到最近,仅那些世界之一可以包含质量所以这些平行世界提供任何解决方案来简化在近距离放射治疗复杂的几何覆盖问题,辐射源和涂药器与基于CT患者几何即重叠。到手柄种子和MC施加器覆盖的标准方法需要除去CT的体素,其边界会相交源,将所述光源到所得到的空隙,然后回填空隙的剩余空间与相关材料。回填过程可能会降低病人表现的准确度,并使用快已定期素几何开发的技术排除了记忆效率的编码技术的几何复杂性。患者必须由较少的存储器和CPU效率GEANT4体素放置技术,G4PVPlacement,而不是更有效G4NestedParameterization(G4NestedParam)来表示。我们引进的第一次为解决这一问题GEANT4功能:分层质量几何(LMG),其中标准(CT基于患者的几何形状)和平行世界(种子和喷头)现在都可能有质量。对于其中质量为存在于平行世界的任何区域,则使用并行质量。在其他地方,则使用标准的世界的质量。与LMG用户不再需要除去患者的体素的CT将包括例如种子。患者表示可以是一个常规的体素网格,有利于G4NestedParam,以及患者CT衍生的材料保持精确,避免了回填技术的不准确性。通过使用三种不同的几何技术GEANT4版本9.5.p01进行与125I永久性粒子植入一个病人植入后的剂量。第一种技术是上述的标准(G4PVPlacement)。第二种技术放置在患者的体素同前,但放置种子与LMG(G4PVPlacement + LMG)。通过G4NestedParam第三技术放置在患者的体素和种子通过LMG(G4NestedParam + LMG)。所有的方案中,用3个不同的图像压缩因子计算出的操纵体素的数目。另外,所述回填技术的剂量测定影响进行了研究用于钙化中的源接近的情况。 LMG取消了回填和简化的几何描述的需要。两个LMG技术中,G4PVPlacement + LMG没有利益的计算时间或内存使用,实际增加的计算时间,但G4NestedParam + LMG既减少计算时间和内存。 G4NestedParam + LMG超过标准G4PVPlacement好处随着素数增加。对于钙化的靠近源的情况下,LMG不仅提高了效率,但也产生了更精确的剂量计算比G4PVPlacement。 G4NestedParam与LMG本组合一个新的,有效的方法来重叠患者几何模拟辐射源。与近距离放疗涂抹案件将构成方法的直接延伸。

著录项

  • 来源
    《Physics in medicine and biology.》 |2012年第19期|共9页
  • 作者单位

    Département de Radio-Oncologie Université Laval CHUQ Pavillon l'H?tel-Dieu de Québec QC G1R 2J6;

    Department of Radiation Oncology (MAASTRO) GROW School for Oncology and Developmental Biology;

    Département de Radio-Oncologie Université Laval CHUQ Pavillon l'H?tel-Dieu de Québec QC G1R 2J6;

    Department of Radiation Oncology (MAASTRO) GROW School for Oncology and Developmental Biology;

    Département de Radio-Oncologie Université Laval CHUQ Pavillon l'H?tel-Dieu de Québec QC G1R 2J6;

    SLAC National Accelerator Laboratory Menlo Park CA 94025 United States;

    SLAC National Accelerator Laboratory Menlo Park CA 94025 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 R35;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号