...
首页> 外文期刊>Organometallics >Ligand Exchange on and Allylic C–H Activation by Iron(0) Fragments: π-Complexes, Allyliron Species, and Metallacycles
【24h】

Ligand Exchange on and Allylic C–H Activation by Iron(0) Fragments: π-Complexes, Allyliron Species, and Metallacycles

机译:Ligand Exchange On and allylic c-h通过铁(0)片段激活:π-络合物,烯丙基物种和金属族

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The complexes [(dippp)Fe(C_(2)H_(4))_(2)] ( 2 ) and [CpFe(C_(2)H_(4))_(2)][Li·(tmeda)] ( 5 ) both contain a formally zerovalent iron center but exhibit markedly different catalytic properties. Whereas 5 is able to induce a broad range of cycloisomerization and cycloaddition reactions, 2 is so far basically limited to cyclotrimerizations of alkynes and nitriles. Investigations into the behaviors of both complex vis-à-vis unsaturated substrates provided insights into the likely origins of this distinct behavior. Thus, ordinary terminal or internal alkenes were found not to replace the ligated ethylene units in 2 , whereas the stronger π-acceptor ligands 1,5-cyclooctadiene, 2-norbornene, and tolane afforded the corresponding π-complexes 8 , 9 , 10 , and 13 . A cyclopropene derivative engaged in oxidative cyclization with formation of the corresponding metallacycle 12 . Allyl-9-BBN or alkenyl-9-BBN derivatives succumbed to allylic C–H activation with formation of the unorthodox allyliron complexes 25 and 27 featuring a bridging hydride ligand between the iron and the boron atoms. Along the same line, 1,3-dienes bind well to 2 but undergo spontaneous activation if allylic C–H bonds are present; the resulting hydride is transferred to a residual ethylene ligand, as manifest in the formation of the cyclopentadienyl ethyl complex 22 . The same elementary steps surface in a remarkable reaction cascade comprising two consecutive C–H activation reactions and a stereoselective C–C bond formation, which ultimately provides the substituted cyclohexadienyl complexes 20 and 23 . In contrast, the heterobimetallic complex 5 neither induces allylic C–H activation nor binds 1,3-butadiene under conditions where it proved catalytically active. The targeted butadiene complex 34 had to be made by an indirect route and is distinguished by a noteworthy “flyover” constitution. Therefore, we conclude that the known cycloaddition and cycloisomerization reactions catalyzed by 5 do not
机译:复合物[(Dippp)Fe(C_(2)H_(4))_(2)](2)和[CPFE(C_(2)H_(4))_(2)] [LI·(TMEDA)] (5)均含有正式零铁中心,但表现出明显不同的催化性质。虽然5能够诱导广泛的环旋异构化和环加成反应,但到目前为止,2迄今为止仅限于炔烃和腈的循环反转。调查复杂的Vis-is-Vis不饱和基质的行为提供了洞察力,进入这种独特行为的可能起源。因此,发现普通末端或内烯烃在2中不替换连接的乙烯单元,而较强的π-受体配体1,5-环辛二烯,2-降冰片烯和甲酚得到相应的π-络合物8,9,10, 13。环丙烯衍生物与相应的金属糖12的形成接合氧化环化。烯丙基-9-BBN或链烯基-9-BBN衍生物屈服于烯丙基C-H活化,形成非正统烯丙基络合物25和27,其具有铁和硼原子之间的桥接氢化物配体。沿着相同的线,1,3-二烯结合良好,但如果存在烯丙基C-H键,则经过自发的激活;将所得氢化物转移到残余乙烯配体中,如在形成环戊二烯基乙基复合物22的情况下的清单。在具有显着反应级联中的相同基本步骤表面,其包括两个连续的C-H激活反应和立体选择性C-C键形成,最终提供取代的环己二烯基络合物20和23。相反,异质物质复合物5均不会诱导烯丙基C-H激活,也不会在其证明催化活性的条件下结合1,3-丁二烯。目标丁二烯综合体34必须由间接途径制作,并且由一个值得注意的“天桥”构成区分。因此,我们得出结论,已知的环加成和催化催化的环旋异构化反应催化5

著录项

  • 来源
    《Organometallics》 |2018年第5期|共11页
  • 作者单位

    Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany;

    Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany;

    Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany;

    Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany;

    Max-Planck-Institut für Chemische Energiekonversion 45470 Mülheim/Ruhr Germany;

    Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 元素有机化合物;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号