首页> 外文期刊>RSC Advances >Different directional energy dissipation of heterogeneous polymers in bimodal atomic force microscopy
【24h】

Different directional energy dissipation of heterogeneous polymers in bimodal atomic force microscopy

机译:双峰原子力显微镜中异质聚合物的不同方向能量耗散

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic force microscopy (DFM) has become a multifunctional and powerful technique for the study of the micro-nanoscale imaging and force detection, especially in the compositional and nanomechanical properties of polymers. The energy dissipation between the tip and sample is a hot topic in current materials science research. The out-of-plane interaction can be measured by the most commonly used tapping mode DFM, which exploits the flexural eigenmodes of the cantilever and a sharp tip vibrating perpendicular to the sample surface. However, the in-plane interaction cannot be detected by the tapping mode. Here a bimodal approach, where the first order flexural and torsional eigenmodes of the cantilever are simultaneously excited, was developed to detect the out-of-plane and in-plane dissipation between the tip and the polymer blend of polystyrene (PS) and low-density polyethylene (LDPE). The vibration amplitudes and phases have been recorded to obtain the contrast, energy dissipation and virial versus the setpoint ratio of the first order vibration amplitude. The pull-in phenomenon caused by a strong attractive force can occur near the transitional setpoint ratio value, the amplitude setpoint at which the mean force changes from overall attractive to overall repulsive. The in-plane dissipation is much lower than out-of-plane dissipation, but the torsional amplitude image contrast is higher when the tip vibrates near the sample surface. The average tip-sample distance can be controlled by the setpoint ratio to study the in-plane dissipation. Both flexural and torsional phase contrasts and torsional amplitude contrast can also be significantly enhanced in the intermediate setpoint ratio range, in which compliant heterogeneous materials can be distinguished. The experiment results are of great importance to optimize the operating parameters of image contrast and reveal the mechanism of friction dissipation from the perspective of in- and out-of-plane energy dissipation at different height levels, which adds valuable ideas for the future applications, such as compliant materials detection, energy dissipation and the lateral micro-friction measurement and so on.
机译:动态力显微镜(DFM)已成为研究微纳米级成像和力检测的多功能和强大的技术,特别是在聚合物的组成和纳米机械性质中。尖端和样品之间的能量耗散是当前材料科学研究中的热门话题。平面外相互作用可以通过最常用的攻丝模式DFM测量,该DFM利用悬臂的弯曲特征模点和垂直于样品表面的尖锐尖端振动。然而,不能通过攻丝模式检测面内交互。这里是一种双峰的方法,其中悬臂同时激发悬臂的第一阶弯曲和扭转特征模块,以检测尖端和聚苯乙烯(PS)的聚合物共混物之间的平面外和面内耗散和低 - 密度聚乙烯(LDPE)。已经记录了振动幅度和阶段以获得对比度,能量耗散和病毒与第一阶振动幅度的设定值。由强大吸引力引起的拉伸现象可能在过渡设定值比值附近发生,幅度设定点,在该幅度设定点,其中平均力从整体吸引力变化到总体排斥性。面内耗散远低于平面外耗散,但是当尖端振动在样品表面附近时,扭转幅度图像对比度更高。平均尖端样品距离可以通过设定值来控制面内耗散。在中间设定点比范围内也可以显着增强弯曲和扭转相位对比度和扭转幅度对比度,其中可以区分柔顺的异质材料。实验结果非常重要,可以优化图像对比的操作参数,并从不同高度水平的平面外能量耗散的角度下揭示摩擦耗散的机制,这增加了未来应用的有价值的想法,如柔顺的材料检测,能量耗散和横向微摩擦测量等。

著录项

  • 来源
    《RSC Advances》 |2019年第47期|共11页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号