...
首页> 外文期刊>RSC Advances >Hydrothermal synthesis and adsorption behavior of H(4)Ti(5)O(12)nanorods along [100] as lithium ion-sieves
【24h】

Hydrothermal synthesis and adsorption behavior of H(4)Ti(5)O(12)nanorods along [100] as lithium ion-sieves

机译:H(4)Ti(5)O(12)纳米棒沿[100]作为锂离子筛的水热合成和吸附行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The adsorption method is a promising route to recover Li(+)from waste lithium batteries and lithium-containing brines. To achieve this goal, it is vital to synthesize a stable and high adsorption capacity adsorbent. In this work, Li(4)Ti(5)O(12)nanorods are prepared by two hydrothermal processes followed by a calcination process. Then the prepared Li(4)Ti(5)O(12)nanorods are treated with different HCl concentrations to obtain a H(4)Ti(5)O(12)adsorbent with 5 mu m length along the [100] direction. The maximum amount of extracted lithium can reach 90% and the extracted titanium only 2.5%. The batch adsorption experiments indicate that the H(4)Ti(5)O(12)nanorod maximum adsorption capacity can reach 23.20 mg g(-1)in 24 mM LiCl solution. The adsorption isotherms and kinetics fit a Langmuir model and pseudo-second-order model, respectively. Meanwhile, the real adsorption selectivity experiments show that the maximum Li(+)adsorption capacity reaches 1.99 mmol g(-1), which is far higher than Mg2+(0.03 mmol g(-1)) and Ca2+(0.02 mmol g(-1)), implying these nanorods have higher adsorption selectivity for Li(+)from Lagoco Salt Lake brine. The adsorption capacity for Li(+)remains 91% after five cycles. With the help of XPS analyses, the adsorption mechanism of Li(+)on the H(4)Ti(5)O(12)nanorods is an ion exchange reaction. Therefore, this nanorod adsorbent has a potential application for Li(+)recovery from aqueous lithium resources.
机译:吸附方法是从废锂电池和含锂盐水中恢复Li(+)的有希望的途径。为实现这一目标,合成稳定和高吸附容量吸附剂至关重要。在这项工作中,Li(4)Ti(5)o(12)纳米棒由两个水热过程制备,然后进行煅烧过程。然后用不同的HCl浓度处理制备的Li(4)Ti(5)O(12)烷段,得到H(4)Ti(5)o(12)吸附剂,其沿[100]方向为5μm。最大提取的锂量可达到90%,萃取的钛仅为2.5%。批量吸附实验表明,H(4)Ti(5)O(12)纳米棒最大吸附能力在24mM LiCl溶液中可以达到23.20mg(-1)。吸附等温线和动力学分别适用于Langmuir模型和伪二阶模型。同时,真正的吸附选择性实验表明,最大Li(+)吸附能力达到1.99mmol g(-1),远远高于Mg2 +(0.03mmol g(-1))和Ca2 +(0.02mmol g(-1 )),暗示这些纳米棒具有较高的Li(+)来自盐湖盐湖的Li(+)的吸附选择性。 5个循环后Li(+)的吸附能力仍为91%。在XPS分析的帮助下,H(4)Ti(5)O(12)纳米棒的Li(+)的吸附机理是离子交换反应。因此,该纳米棒吸附剂具有从锂资源水溶液中回收Li(+)的潜在应用。

著录项

  • 来源
    《RSC Advances》 |2020年第58期|共11页
  • 作者单位

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810008 Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810008 Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810008 Peoples R China;

    Key Lab Salt Lake Resources Chem Qinghai Prov Xining 810008 Peoples R China;

    Qinghai Normal Univ Sch Chem &

    Chem Engn Xining 810008 Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810008 Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810008 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号