首页> 外文期刊>RSC Advances >Palladium-coated narrow groove plasmonic nanogratings for highly sensitive hydrogen sensing
【24h】

Palladium-coated narrow groove plasmonic nanogratings for highly sensitive hydrogen sensing

机译:用于高敏感的氢气传感的钯涂覆的窄槽等离子体纳米型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper, we propose novel plasmonic hydrogen sensors based on palladium coated narrow-groove plasmonic nanogratings for sensing of hydrogen gas at visible and near-infrared wavelengths. These narrow-groove plasmonic nanogratings allow the incident light to be coupled directly into plasmonic waveguide modes thereby alleviating the need for bulky coupling methods to be employed. We carried out numerical simulations of the palladium coated narrow-groove plasmonic nanogratings using rigorous coupled wave analysis (RCWA). When palladium is exposed to varying concentrations of hydrogen gas, palladium undergoes phase transition to palladium hydride (PdHx), such that there are different atomic ratios 'x' (H/Pd) of hydrogen present in the palladium hydride (PdHx) depending on the concentration of the hydrogen gas. RCWA simulations were performed to obtain the reflectance spectral response of the Pd coated nanogratings in both the absence and presence of hydrogen, for various atomic ratios 'x' (x similar to 0.125 to 0.65) in palladium hydride (PdHx). The results of the RCWA simulations showed that as the dielectric permittivity of the palladium (Pd) thin film layers in between the adjacent walls of the plasmonic nanogratings changes upon exposure to hydrogen, significant shifts in the plasmon resonance wavelength (maximum Delta lambda being similar to 80 nm for an increase in the value of the atomic ratio 'x' from 0 to 0.65) as well as changes in the differential reflection spectra are observed. The structural parameters of these Pd coated narrow groove nanogratings-such as the nanograting height, gap between the nanograting walls, thickness of the palladium layer, periodicity of the nanogratings-were varied to maximize the shift in the plasmon resonance wavelength as well as the differential reflectance when these nanostructures are exposed to different concentrations of hydrogen (i.e. for different atomic ratios 'x' in PdHx).
机译:本文提出了基于钯涂层窄槽等级纳入的新型等离子体氢传感器,用于检测可见光和近红外波长的氢气。这些窄槽等离子体纳米格拉特省允许入射光直接耦合到等离子体波导模式中,从而减轻了需要使用庞大偶联方法的需求。我们使用严格耦合波分析(RCWA)对钯涂覆的窄槽等离子体纳米征纳的数值模拟进行了测量。当钯暴露于不同浓度的氢气浓度时,钯经历相转变至氢化钯(PDHX),使得存在钯氢化钯(PDHX)中存在的不同原子率“X'(H / PD),这取决于浓缩氢气。进行RCWA模拟以获得钯氢化钯(PDHX)的各种原子比X'(X类似于0.125至0.65)的不同和存在的PD涂覆纳米瘤的反射光谱响应。 RCWA模拟的结果表明,随着钯(Pd)薄膜层的介电介电常数在等离子体纳米纳入的相邻壁之间的邻近壁之间发生变化,在暴露于氢气中,等离子体谐振波长的显着变化(最大Delta Lambda类似于80nm用于从0到0.65的原子比的值的值增加)以及观察到差分反射光谱的变化。这些PD涂覆的窄槽纳米花瓣的结构参数 - 例如纳入高度,纳米壁层之间的间隙,钯层的周度,纳米花瓣的周期性 - 被变化,以最大化等离子体共振波长以及差分的偏移当这些纳米结构暴露于不同浓度的氢气时(即在PDHX中的不同原子比X')的反射率)。

著录项

  • 来源
    《RSC Advances》 |2020年第7期|共11页
  • 作者单位

    Indian Inst Technol Delhi Dept Elect Engn New Delhi 110016 India;

    Indian Inst Technol Delhi Dept Elect Engn New Delhi 110016 India;

    Indian Inst Technol Delhi Dept Elect Engn New Delhi 110016 India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号