...
首页> 外文期刊>RSC Advances >Polymer semiconductors incorporating head-to-head linked 4-alkoxy-5-(3-alkylthiophen-2-yl)thiazole
【24h】

Polymer semiconductors incorporating head-to-head linked 4-alkoxy-5-(3-alkylthiophen-2-yl)thiazole

机译:聚合物半导体包含头部与头部连接的4-烷氧基-5-(3-烷基噻吩-2-基)噻唑

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Head-to-head linked bithiophenes with planar backbones hold distinctive advantages for constructing organic semiconductors, such as good solubilizing capability, enabling narrow bandgap, and effective tuning of frontier molecular orbital (FMO) levels using minimal thiophene numbers. In order to realize planar backbone, alkoxy chains are typically installed on thiophene head positions, owing to the small van der Waals radius of oxygen atom and accompanying noncovalent SO interaction. However, the strong electron donating alkoxy chains on the electron-rich thiophenes lead to elevated FMO levels, which are detrimental to material stability and device performance. Thus, a new design approach is needed to counterbalance the strong electron donating property of alkoxy chains to bring down the FMOs. In this study, we designed and synthesized a new head-to-head linked building block, 4-alkoxy-5-(3-alkylthiophen-2-yl)thiazole (TRTzOR), using an electron-deficient thiazole to replace the electron-rich thiophene. Compared to previously reported 3-alkoxy-3-alkyl-2,2-bithiophene (TRTOR), TRTzOR is a weaker electron donor, which considerably lowers FMOs and maintains planar backbone through the noncovalent SO interaction. The new TRTzOR was copolymerized with benzothiadiazoles with distinct F numbers to yield a series of polymer semiconductors. Compared to TRTOR-based analogous polymers, these TRTzOR-based polymers have broader absorption up to 950 nm with lower-lying FMOs by 0.2-0.3 eV, and blending these polymers with PC71BM leads to polymer solar cells (PSCs) with improved open-circuit voltage (V-oc) by ca. 0.1 V and a much smaller energy loss (E-loss) as low as 0.59 eV. These results demonstrate that thiazole substitution is an effective approach to tune FMO levels for realizing higher V(oc)s in PSCs and the small E-loss renders TRTzOR a promising building block for developing high-performance organic semiconductors.
机译:具有平面骨架的头部到头部连接的薄烯烯烯烯,其特殊优点适用于构建有机半导体,例如良好的溶解能力,实现窄的带隙,并使用最小噻吩数字有效调整前部分子轨道(FMO)水平。为了实现平面骨架,由于氧原子的小van der下游和伴随的非共价相互作用,通常安装烷氧基链。然而,将富含电子硫代酚的强电子提供烷氧基链导致升高的FMO水平,这对材料稳定性和装置性能有害。因此,需要一种新的设计方法来抵消烷氧基链的强电子捐赠性能以降低FMOS。在这项研究中,我们设计并合成了一种新的头部与头部连接结构块,4-烷氧基-5-(3-烷基噻吩-2-基)噻唑(TRTZOR),使用缺氧噻唑来取代电子 - 富含噻吩。与先前报道的3-烷氧基-3-烷基-2,2-二硫代丙烯烯(TRTOR)相比,TRTZOR是较弱的电子给体,其显着降低了FMOS并通过非共价使得平面骨架保持在非共价上。新的Trzor与苯并噻唑与苯并噻唑共聚,不同的F数量,得到一系列聚合物半导体。与基于Trtor的类似聚合物相比,这些基于Trtzor的聚合物具有较宽的吸收,可容纳950nm,较低的FMOS较低的FMOS×0.2-0.3eV,并将这些聚合物与PC71BM混合,导致高分子太阳能电池(PSC)具有改进的开路电路CA的电压(V-OC)。 0.1 V和更小的能量损失(电子损耗)低至0.59eV。这些结果表明,噻唑替代是一种有效的方法来调整PSC中较高的V(OC)的FMO水平,并且小型电子损失渲染TRTZOR用于开发高性能有机半导体的有前途的构建块。

著录项

  • 来源
    《RSC Advances》 |2018年第62期|共11页
  • 作者单位

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Korea Univ Dept Chem Res Inst Nat Sci Seoul 02841 South Korea;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

    Korea Univ Dept Chem Res Inst Nat Sci Seoul 02841 South Korea;

    Southern Univ Sci &

    Technol SUSTech Shenzhen Key Lab Printed Organ Elect Dept Mat Sci &

    Engn 1088 Xueyuan Rd Shenzhen 518055 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号